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Ideal �monodomain� smectic-A elastomers cross-linked in the smectic-A phase are simply uniaxial rubbers,
provided deformations are small. From these materials smectic-C elastomers are produced by a cooling
through the smectic-A to smectic-C phase transition. At least in principle, biaxial smectic elastomers could also
be produced via cooling from the smectic-A to a biaxial smectic phase. These phase transitions, respectively,
from D�h to C2h and from D�h to D2h symmetry, spontaneously break the rotational symmetry in the smectic
planes. We study the above transitions and the elasticity of the smectic-C and biaxial phases in three different
but related models: Landau-like phenomenological models as functions of the Cauchy-Saint-Laurent strain
tensor for both the biaxial and the smectic-C phases and a detailed model, including contributions from the
elastic network, smectic layer compression, and smectic-C tilt for the smectic-C phase as a function of both
strain and the c-director. We show that the emergent phases exhibit soft elasticity characterized by the vanish-
ing of certain elastic moduli. We analyze in some detail the role of spontaneous symmetry breaking as the
origin of soft elasticity and we discuss different manifestations of softness like the absence of restoring forces
under certain shears and extensional strains.
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I. INTRODUCTION

Liquid crystalline elastomers �1� are fascinating hybrid
materials that combine the elastic properties of rubber with
the orientational and positional order of liquid crystals �2�.
As in conventional liquid crystals, there exists a great variety
of phases in liquid crystalline elastomers. For example, nem-
atic, cholesteric, smectic-A �SmA�, chiral smectic-A*

�SmA*�, smectic-C �SmC�, and chiral smectic-C* �SmC*�
phases have been created in elastomeric forms �1�. Among
these elastomers, nematics have to date received the most
attention leading to the discovery of a number of remarkable
properties of these materials such as soft elasticity �3–7�,
dynamic soft elasticity �8–10�, and anomalous elasticity
�11–13�. In contrast, the understanding of smectic elastomers
is much less developed, at least from a theoretical point of
view. Given that there is a substantial literature treating the
synthesis and experimental properties of smectic elastomers
�14–22�, that smectic elastomers have intriguing properties
and potential for device applications such as manometer-
scale actuators �23�, and that smectics play a leading role in
conventional liquid crystals where they have attracted out-
standing scientific and technological interest since the dis-
covery of spontaneous ferroelectricity in C* smectics �24�, it
is clear that a deeper theoretical understanding of smectic
elastomers is desirable.

To date there have been, as far as we know, only relatively
few theoretical investigations of smectic elastomers for the
apparent reason that such investigations are difficult due to
the complexity and low symmetry of the material. Terentjev
and Warner developed expressions for the elastic energies of
SmA and SmA* elastomers �25� as well as for SmC and
SmC* elastomers �26� based on group theoretical arguments.
The coupling of the smectic layers to the elastic network was

critically discussed and shortcomings of Ref. �25� in this
respect were corrected in �27�. Subsequently, the damping
effect of the rubber-elastic matrix on the fluctuations of the
smectic layers, leading to a suppression of the Landau-
Peierls instability and true one-dimensional long-range order,
was analyzed in �28�. Weilepp and Brand �29� discussed an
undulation instability as a possible explanation for the tur-
bidity of SmA elastomers under stretch along the normal of
the smectic layers. Osborne and Terentjev �30� derived ex-
pressions for the effective elastic constants of SmA elas-
tomers when these are viewed as effectively uniaxial systems
and revisited the suppression of fluctuations of the smectic
layers. Very recently, Adams and Warner �AW� �31–33� set
up a model for the elasticity of smectic elastomers by ex-
tending the so-called neoclassic model of rubber elasticity,
which was originally developed and very successfully used
to describe nematic elastomers �1�, to include the effects of
smectic layering. Also just recently we worked out theories
for the low-frequency long-wavelength dynamics of smectic
elastomers in, respectively, the SmA, biaxial, and SmC
phases �34�.

In principle, smectic elastomers can be produced either by
cooling nematic elastomers through the transition to the
smectic phase or by cross-linking in the smectic phase. Both
SmA and SmC elastomers have been prepared mostly by the
second method, e.g., by cross-linking side chain liquid crys-
talline polymers, which have a tendency to form layers be-
cause their mesogens are often immiscible with the poly-
meric backbone �14�, or by cross-linking polymer chains or
hydrophobic tails in bilayer lamellar phases of, respectively,
diblock copolymers or surfactant molecules �15�. Cross-
linking in the smectic phase tends to lock the smectic layers
to the cross-linked network �27�. Without this lock-in, the
phase of the smectic mass-density-wave can translate freely
relative to the elastomer as it can in smectics in aerogels
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�35�. To keep our discussion as simple as possible, we will
not consider in the following the case of cross-linking in the
nematic phase, and we take the lock-in of the smectic layers
and the elastic matrix as given.

As in nematics, unconventional properties are most pro-
nounced in samples of smectic elastomers that have an ideal,
monodomain morphology so that the director has a uniform
orientation throughout. In practice, however, liquid crystal
elastomers tend to be nonideal, i.e., the material segregates
into many domains, each having its own local director. In
order to avoid such polydomain samples, elaborate cross-
linking schemes involving electric or mechanical external
fields for aligning the director have been developed and suc-
cessfully applied to smectic elastomers �16–18�. The latest
achievement in this respect was reported very recently by
Hiraoka et al. �19�, who produced a monodomain sample of
a SmC elastomer forming spontaneously from a SmA phase
upon cooling and carried out experiments demonstrating its
spontaneous and reversible deformation in a heating an cool-
ing process.

A monodomain SmA elastomer cross-linked in the SmA
phase is effectively a uniaxial solid with D�h symmetry, at
least for small deformations. For lager deformations, how-
ever, SmA elastomers can show unconventional effects, as do
SmA* elastomers in external electric fields. These unconven-
tional effects in SmA elastomers are outside the scope of this
paper and will be addressed in a separate paper �36�.

The elastic properties of a SmC elastomer depend on
whether it was cross-linked in the SmA or SmC phase. If it is
prepared by cross-linking in a SmC phase, reached either by
stretching or by applying an external electric field, it is a
conventional biaxial solid with C2h symmetry. If, however,
the SmC phase develops spontaneously upon cooling from a
uniaxial SmA �as in the work of Hiraoka et al.� then the
underlying phase transition from D�h to C2h symmetry �see
Fig. 1� spontaneously breaks the continuous rotational sym-
metry in the smectic planes. As a consequence of the Gold-
stone theorem that requires any phase with a spontaneously
broken continuous symmetry to have modes whose energy
vanishes with wavenumber, like monodomain nematic elas-
tomers �3–7�, these SmC elastomers are predicted to exhibit
soft elasticity characterized by the vanishing of a certain
elastic modulus and the associated absence of restoring
forces to strains along specific symmetry directions �37�.

Though biaxial phases are notoriously hard to find in na-
ture, it is possible, at least in principle, that a biaxial SmA
phase spontaneously forms upon cooling from a SmA elas-
tomer. In what follows, we will often simply refer to biaxial
SmA elastomers as biaxial smectic elastomers or biaxial elas-
tomers. In contrast to the aforementioned phase transition to
a soft SmC elastomer, the transition to the biaxial SmA phase
involves no net tilt of the mesogens and takes the system to
D2h instead of C2h symmetry �see Fig. 1�. Nonetheless, this
transition also breaks the rotational invariance in the smectic
layers spontaneously and thus the emerging biaxial phase is
soft �37� similar to ideal nematic and SmC elastomers.

In this paper we study the phase transitions from SmA
elastomers to biaxial and SmC elastomers and the elasticity
of the emergent phases. As briefly presented in Ref. �37�, we
set up three different but related models. Our first two mod-

els involve only elastic degrees of freedom, i.e., they involve
exclusively the usual strain tensor. Our third model also in-
cludes the Frank director specifying the direction of local
molecular order. Each of the models is analyzed within
mean-field theory, revealing as the primary result the soft
elasticity of biaxial and SmC elastomers �32,33,37� alluded
to in the forgoing paragraphs.

The outline of our paper is as follows: Section II briefly
reviews the Lagrange formulation of elasticity theory in the
context of uniaxial elastomers to establish notation and to
provide a starting point for our models to follow. Section III
presents our strain-only theory for biaxial elastomers. We
study the transition from the SmA to the biaxial state and the
elastic properties of the latter. We derive the elastic energy
density of the biaxial state and discuss its softness with re-
spect to certain shears and extensional strains. Section IV
contains our strain-only theory for SmC elastomers. We in-
vestigate the SmA-to-SmC transition and calculate the elastic
energy density of the SmC phase. Different manifestations of
the softness of SmC elastomers are pointed out. Section V
formulates our theory for SmC elastomers with strain, Frank
director, and smectic layers. Using the polar decomposition
theorem, we derive transformations between vectors that
transform according to operations on reference-space posi-
tions x of the undistorted medium and those that transform
according to operations on target-space positions R�x� of the
distorted medium, and we formulate the elastic energy for
coupled director and strain in terms of nonlinear-strain and
director fields that transform under reference-state operations
only. In this approach, phase transitions can be studied with-
out specifying actual orientation in space. We develop a full
model free energy that includes contributions from the cross-
linked network, smectic layer compression, and coupling be-
tween the Frank director and the smectic layer normal. Then,

FIG. 1. Sample distortion and rotations of the Frank director n,
the uniaxial anisotropy axis e�ez, and the layer normal N in a
transition from a �a� SmA to �b� a biaxial and �c� a sheared SmC
elastomer. In part �c� we chose the geometry, i.e., the coordinate
system in target space, so that the smectic layers do not rotate.
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as above, we study the phase transition from the SmA to the
SmC phase and the elastic energy density of the emergent
phase. In addition, we discuss the general form of soft defor-
mations and strains in SmC elastomers based on rotational
invariance in the smectic planes and we elaborate on softness
under extensional strains. Concluding remarks are given in
Sec. VI. There are in total four appendixes which contain
technical details or arguments that lie somewhat aside the
line of thought of the main text.

II. LAGRANGIAN DESCRIPTION OF UNIAXIAL
ELASTOMERS

As argued above, ideal SmA elastomers are macroscopi-
cally simply uniaxial rubbers, but with nonlinear properties
that distinguish them from simple uniaxial solids. We will
employ the usual Langrangian formalism �38,39� of elastic-
ity theory. Here, we briefly review key elements of this for-
malism in the context of uniaxial elastomers to establish no-
tation and to provide some background information.

In the Langrangian formalism mass points in an undis-
torted medium �or body�, which we take as the reference
space, are labeled by vectors x. Mass points of the distorted
medium are at positions

R�x� = x + u�x� �2.1�

that constitute what we call the target space. Both reference
space points x and target space points R�x� exist in the same
physical Euclidean space E where measurements are made.
Thus R�x� is a mapping from E to E. Both x and R�x� can be
decomposed into components along the standard orthonor-
mal basis �ai � i=x ,y ,z� of E:

x = xiai, R�x� = Ri�x�ai. �2.2�

Here and in what follows, we use the summation convention
on repeated indices unless we indicate otherwise. We will
also use the convention that indices from the middle of the
alphabet run over all space coordinates, i , j ,k=x ,y ,z. We
choose our coordinate system so that the z-axis is along the
uniaxial direction of the initial reference material. Indices
from the beginning of the alphabet, a, b, c, run over x and y
only, i.e., over directions perpendicular to the anisotropy
axis.

Though reference- and target-space vectors both exist in
E, they transform under distinct and independent transforma-
tion operations. Let O�� R and O�� T denote, respectively, matrices
describing transformations �which we will take mostly to be
rotations but which could include reflections and inversions
as well� in the reference and target spaces; then under these
transformations, x→x�=O�� Rx and R�x�→R��x�=O�� TR�x�, or
in terms of components relative to the a-basis

Ri��x� = OT,ijRj�x� , �2.3a�

xi� = OR,ijxj . �2.3b�

Unless otherwise specified, we will view O�� R and O�� T as op-
erators that rotate vectors rather than coordinate systems.

Elastic energies are invariant under arbitrary rigid rota-
tions and translations in the target space and under symmetry

operations of the references space of the form x→x�
=O�� R

−1x+b, where b is a constant vector and O�� R is a matrix
associated with some symmetry element of the reference
space. Thus elastic energies are invariant under transforma-
tions of the form

R�x� → R��x�� = O= TR�O= R
−1x + b� + X , �2.4�

where O�� T is an arbitrary target-space rotation matrix and X is
a constant displacement vector. In what follows, we will gen-
erally ignore the displacements X and b. The use of O�� R

−1 in
Eq. �2.4� rather than O�� R is a matter of convention �40�. With
the choice O�� R

−1, when O�� T=��� where ��� is the unit matrix, the
mapping R��x� takes the point O�� Rx to the same point in E as
the mapping R�x� takes the point x.

We will usually represent the reference-space points x in
terms of their coordinates relative to the basis �ai�. We will,
however, find it useful on occasion to consider orthonormal
bases locked to the reference medium and to represent
reference-space vectors relative to them. The initial basis
�ẽi � i=x ,y ,z� is identical to the basis �ai � i=x ,y ,z�, and x
=xiai�xiẽi. ẽz is thus a vector along the uniaxial axis of the
undistorted body �41�. Under rotations of the body basis, x
=xi�ẽi�=xiei, where

ẽi� = OR,ijẽ j �2.5�

and xi�=OR,ijxj. As we shall discuss in more detail in Sec.
V A associated with each reference-space vector, there is a
target-space vector of the same length. Thus, associated with
the reference basis �ẽi�, there is a target basis �ei�. In particu-
lar there is a target-space anisotropy direction ez associated
with ẽz.

Distortions of the reference medium are described by the
Cauchy deformation tensor �= with components

�ij = �Ri/�xj � � jRi. �2.6�

It transforms under the operations of Eq. �2.3� according to

�= �x� → O= T�= �x��O= R
−1, �2.7�

i.e., the right subscript transforms under target-space rules
and the left under reference-space rules. Usually, Lagrangian
elastic energies are expressed in terms of the Cauchy-Saint-
Venant �38,42� nonlinear strain tensor u= = �g

=
−�= � /2, where

g
=

= �= T�= �2.8�

is the metric tensor. The components of u= are

uij�x� =
1

2
��ik

T �kj − �ij� �2.9a�

=
1

2
��iuj + � jui + �iuk� juk� . �2.9b�

The strain u= is a reference-space tensor: it is invariant under
transformations O= T in the target space, but it transforms like
a tensor under reference-space transformations:
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u= �x� → O= Ru= �x��O= R
−1. �2.10�

This expression applies both to physical transformations of
reference-space vectors under xi�=OR,ij

−1 xj or under changes of
basis described by Eq. �2.5� under which �ij→�ij�
=�Ri /�xj�=�ikOR,kj

−1 .
To discuss incompressible materials, such as most elas-

tomers, it can be more appropriate to use variables other than
the strain tensor to account for deformations that are not pure
shear. In the case of uniaxial elastomers, such variables are
the relative change of the system volume V,

� � �V/V = �det �= T�= �1/2 − 1 = �det�1 + 2u= ��1/2 − 1,

�2.11a�

and the relative change of separation of mass points whose
separation vector in the reference state is along the z axis:

�z � �Lz/Lz = ��iz�iz�1/2 − 1 = �1 + 2uzz�1/2 − 1.

�2.11b�

Using these variables and, where appropriate, the elements of
the strain tensor, the elastic free energy density of a uniaxial
elastomer to harmonic order can be expressed as

funi =
1

2
C1�z

2 + C2�z� +
1

2
C3�2 + C4ûab

2 + C5uaz
2 ,

�2.12�

where

ûab = uab −
1

2
�abucc �2.13�

is the two-dimensional symmetric, traceless strain tensor
with two-independent components that can be expressed as
û
=

=u1�ẽxẽx− ẽyẽy�+u2�ẽxẽy + ẽyẽx�. The elastic constant C1 de-
scribes dilation or compression along z and C3 describes ex-
pansion or compression of the bulk volume. C2 couples these
two types of deformations. C4 and C5, respectively, describe
shears in the plane perpendicular to the anisotropy axis and
in the planes containing it. With the variables used in Eq.
�2.12� it is evident that the incompressible limit corresponds
to C3→�.

If one approximates � and �z by the respective leading
terms in the strains one is left with

� = uii + O�uij
2 � , �2.14a�

�z = uzz + O�uzz
2 � , �2.14b�

and the elastic energy density �2.12� reduces to the more
standard-type expression

funi =
1

2
C1uzz

2 + C2uzzuii +
1

2
C3uii

2 + C4ûab
2 + C5uaz

2 .

�2.15�

Our models to be presented in the following are in spirit
Landau expansions in powers of uij or in powers of uij and
the Frank director, respectively. Hence, for our purposes, the
approximations in Eqs. �2.14� will be sufficient, and we can

use Eq. �2.15� as a starting point for the construction of our
models. As we show in Appendix A, using Eq. �2.15�, in-
stead of the more general elastic energy density Eq. �2.12�,
leaves our results qualitatively unchanged, though the more
general theory is needed for a correct description of the in-
compressible limit.

III. BIAXIAL SMECTIC-A ELASTOMERS—STRAIN-ONLY
THEORY

In our first theory we consider the case that the shear
modulus C4 becomes negative as it will in response to biaxial
ordering of the constituent mesogens of a uniaxial SmA elas-
tomer.

A. Phase transition from uniaxial to biaxial elastomers

If C4 becomes negative, order of the shear strain ûab sets
in, and higher-order terms featuring ûab have to be added to
Eq. �2.15� which leads to the model elastic energy density

funi
�1� = funi + A1uzzûab

2 + A2uiiûab
2 + B�ûab

2 �2, �3.1�

where we have dropped qualitatively inconsequential higher
order terms. For the analysis that follows it is useful to re-
group the terms in funi

�1� by completing the squares in 1
2C1uzz

2

+A1uzzûab
2 , etc., and to reexpress it as a sum of two terms,

funi
�1� = funi

�1,1� + funi
�1,2�, �3.2�

where

funi
�1,1� =

1

2
C1vzz

2 + C2vzzvii +
1

2
C3vii

2 + C5uaz
2 , �3.3a�

funi
�1,2� = C4ûab

2 + BR�ûab
2 �2 �3.3b�

=2C4�u1
2 + u2

2� + 4BR�u1
2 + u2

2�2.

�3.3c�

The energy funi
�1,2� is clearly identical to the energy of an xy

model with a two component vector �u1 ,u2�. In funi
�1,1�, we

have introduced the composite strains

vzz = uzz − �ûab
2 , �3.4a�

vii = uii − �ûab
2 , �3.4b�

where � and � are combinations of the coefficients in funi
�1�,

	�

�

 =

− 1

C1C3 − C2
2	C3A1 − C2A2

C1A2 − C2A1

 . �3.5�

The subscript R in Eq. �3.3b� indicates that the elastic con-
stant B is renormalized by the ordering of ûab:

BR = B −
1

2
�2C1 − ��C2 −

1

2
�2C3. �3.6�

Note that the coefficient � vanishes in the limit C3→�. �
and BR, on the other hand, remain nonzero. We will assume
that BR remains positive. If it did not, we would have to add
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higher-order terms in ûab, and the transition to the biaxial
phase would be first order.

Now we determine the possible equilibrium states u=0 of
our model by minimizing funi

�1�. As is evident from Eq. �3.3a�,
funi

�1� is minimized for a given equilibrium value ûab
0 of ûab

when

uzz
0 = ��ûab

0 �2, �3.7a�

uii
0 = ��ûab

0 �2, �3.7b�

as well as

uaz
0 = 0. �3.7c�

The equilibrium value of ûab minimizes funi
�1,2� and is deter-

mined by the equation of state

C4ûab
0 + 2BRûab

0 �ûcc�
0 �2 = 0. �3.8�

This equation of state is solved by a ûab
0 of the form

ûab
0 = S	c̃ac̃b −

1

2
�ab
 , �3.9�

where c̃ is any unit vector in the xy-plane and where S is a
scalar order parameter that takes on the values

S = � 0 for C4 � 0,

±�− C4/BR for C4 	 0.
 �3.10�

For simplicity, we choose our coordinate system so that the
x-axis is along c̃. Exploiting definition �2.13� and Eq. �3.9�
and taking c̃= ẽx, we find that the equilibrium strain
tensor u=0 of the new state for C4	0 is diagonal with dia-
gonal-elements

uxx
0 =

1

2
S +

1

4
�� − ��S2, �3.11a�

uyy
0 = −

1

2
S +

1

4
�� − ��S2, �3.11b�

uzz
0 =

1

2
�S2. �3.11c�

Thus the new state is biaxial with D2h symmetry.
The strain u=0 provides a complete description of the mac-

roscopic equilibrium state after the phase transition to the
biaxial state, but it provides no information about a sample’s
specific orientation in space. The latter information is con-
tained in the Cauchy deformation tensor

�ij
0 = �Ri

0/�xj , �3.12�

which is related to u=0 via

u=0 =
1

2
��= 0T�= 0 − �= � . �3.13�

Note that the equilibrium deformation tensor �= 0 is not
uniquely determined by u=0 since rotations in the target space
change �= 0 but do not change u=0. Because u=0 is diagonal, it is

natural in the present case not to rotate the strain after the
transition. Then, �= 0 is also diagonal with diagonal elements
given by

�xx
0 =�1 + S +

1

2
�� − ��S2, �3.14a�

�yy
0 =�1 − S +

1

2
�� − ��S2, �3.14b�

�zz
0 = �1 + �S2. �3.14c�

It is worth noting that the limit C3→� in which � but not �
becomes infinite does not yield the incompressibility condi-
tion det �= =1. This is because in our model, C3 multiplies uii

2

and not ��−1�2 �see Eq. �2.12��.
The emergent anisotropy of the new state in the xy-plane

can be characterized by the anisotropy ratio

r� = 	�xx
0

�yy
0 
2

. �3.15�

Having the equilibrium deformation tensor and the aniso-
tropy ratio we can express the scalar order parameter S as

S =
1

2
���xx

0 �2 − ��yy
0 �2� =

1

2
��yy

0 �2�r� − 1� . �3.16�

In other words, S is a direct measure for the spontaneous
anisotropy in the xy-plane.

B. Elasticity of the biaxial phase

To determine the elastic properties of the new state, we
expand funi

�1� in powers of

�u= = u= − u=0. �3.17�

Since the equilibrium values of vzz, vii, and uaz are zero, the
expansion of funi

�1,1� is trivial,

�funi
�1,1� =

1

2
C1��vzz�2 + C2�vzz�vii +

1

2
C3��vii�2 + C5��uaz�2,

�3.18�

where, up to linear order in �uij,

�vzz = �uzz − �S��uxx − �uyy� , �3.19a�

�vii = �uzz + �1 − �S��uxx + �1 + �S��uyy , �3.19b�

�uaz = uaz. �3.19c�

As discussed after Eq. �3.3b�, the structure of funi
�1,2� is identi-

cal to that of an xy model, which has no restoring force
perpendicular to the direction of spontaneous order, which
we take to be along the ẽx direction. Thus with order produc-
ing a nonvanishing u1= �uxx−uyy� /2, there is no restoring
force for u2=uxy, and

�funi
�1,2� = BRS2��uxx − �uyy�2. �3.20�

Thus �funi
�1� does not depend on �uxy to harmonic order, and

we can conclude already at this stage that the system is soft
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with respect to shears in the xy plane of the original refer-
ence material. Merging Eqs. �3.18� and �3.20� and after ex-
pressing �, �, and BR in terms of the original elastic con-
stants, we obtain

�f �1� =
1

2
�C1 + 2C2 + C3���uzz�2 + C5��uaz�2 + �C2 + C3 + �A1

+ A2�S��uzz�uxx + �C2 + C3 − �A1 + A2�S��uzz�uyy

+
1

2
�C3 + 2A2S + 2BS2���uxx�2 +

1

2
�C3 − 2A2S + 2BS2�


��uyy�2 + �C3 − 2BS2��uxx�uyy �3.21�

after some algebra.
The strain �u= describes distortions relative to the new

biaxial reference state measured in the coordinates of the
original uniaxial state. It is customary and more intuitive,
however, to express the elastic energy in terms of a strain

u=� = ��= 0T�−1�u= ��= 0�−1 �3.22�

measured in the coordinates xi�=xi+ui
0=�ij

0 xj of the new bi-
axial state. In terms of u=�, �f �1� becomes

fD2h

soft =
1

2
Czzzz�uzz� �2 +

1

2
Cxzxz�uxz� �2 +

1

2
Cyzyz�uyz� �2 + Czzxxuzz� uxx�

+ Czzyyuzz� uyy� +
1

2
Cxxxx�uxx� �2 +

1

2
Cyyyy�uyy� �2

+ Cxxyyuxx� uyy� . �3.23�

Our results for the elastic constants Cijkl are listed in Appen-
dix B 1. These elastic constants depend on the original elas-
tic constants featured in Eq. �3.1� and the order parameter S
and one retrieves the uniaxial elastic energy density �2.15�
for S→0.

Equation �3.21� highlights a problem with approximating
�=�V /V with its linearized form uii. In Eq. �2.12�, the limit
C3→� enforces incompressibility, i.e., no volume change,
even if there is a phase transition. In Eq. �2.15�, on the other
hand, this limit only keeps uii=0, and uii does not measure a
volume change relative to a state whose shape has been
changed because of a phase transition. This is easily seen by
noting that �uii=�zz

0 uzz� +�xx
0 uxx� +�yy

0 uyy� is not proportional to
uii�. Thus the limit C3→� does not enforce �V /V=0 in the
biaxial phase. If the full nonlinear theory of Eq. �2.12� is
used, C3 multiplies ��V /V�2 in both the uniaxial and biaxial
phases as we will show in Appendix A. In what follows, we
will continue to use free energies that are harmonic in non-
ordering nonlinear strains because they give rise to far less
algebraic complexity than do the more complete theories.
The important feature of soft elasticity and other physical
quantities are not sensitive to which theory we use. If de-
tailed treatment of incompressibility is important, the more
complete theory can always be used.

Because there was no �uxy term in the expansion of funi
�1�,

there is no term

Cxyxy�uxy� �2 �3.24�

as there would be in conventional orthorhombic systems, be-
cause the elastic constant Cxyxy is zero. Thus, to linear order
in the strain, there is no restoring force to xy-stresses �43�

�xy =
�fD2h

soft

�uxy
, �3.25�

i.e., to opposing forces along ±ẽx applied to opposite surfaces
with normal along ±ẽy or opposing forces along ±ẽy applied
to opposite surfaces with normal along ±ẽx, see Fig. 2.

Note that there is an interesting parallel between the bi-
axial smectics considered here and biaxial nematics formed
spontaneously from an isotropic elastomer. Warner and Kut-
ter �44� predicted that these biaxial nematics have many soft
modes, and one of these is identical to the soft mode of
biaxial smectics discussed above. Finally, we observe that a
biaxial smectic has the same point-group symmetry D2h as an
orthorhombic crystal. However, because it is formed via
spontaneous symmetry breaking from a state with D�h, un-
like an equilibrium orthorhombic crystal, it exhibits soft elas-
ticity in the xy-plane. An orthorhombic state can be reached
via a symmetry-breaking transition from a tetragonal state,
which exhibits square symmetry in the xy-plane. Rather than
exhibiting the soft elasticity discussed above, such an ortho-
rhombic system exhibits martinsitic elasticity �45� in which
domains of different orientation are produced in response to
stress perpendicular to the stretch direction in the xy plane.

C. Rotational invariance and soft extensional strains

In addition to the softness under uxy� shears, the new phase
is, provided that the experimental boundary conditions are
right, soft with respect to certain extensional strains. In the
following paragraphs, we will discuss this softness in some
detail. The mechanism at work here is intimately related to a
mechanism leading to a similar softness in nematic elas-

FIG. 2. Soft shears in biaxial elastomers. The force f exerted
across an infinitesimal surface element dS is f i=�ijdSj. There are
no restoring forces for �a� external forces along ±ẽx applied to op-
posing surfaces with normal along ±ẽy, and �b� for external forces
along ±ẽy applied to surfaces with normal along ±ẽx.
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tomers, and thus our reasoning will follow closely well-
known arguments for nematic elastomers �3,7�. The form of
these soft strains depends only on symmetry and the nature
of the broken-symmetry phase; it is not restricted to small
strains or to systems described by a Landau expansion of the
free energy. First, we will consider global rotations in the
xy-plane of the reference space of our biaxial elastomers. On
the one hand this will prepare the ground for understanding
the softness of extensional strains, and on the other hand, it
will allow us to understand the vanishing of the elastic con-
stant Cxyxy from a somewhat different perspective. Then we
calculate the energy cost of soft extensional strains and fi-
nally we comment on experimental implications.

We saw in Sec. III A that the direction of the spontaneous
anisotropy xy-plane, or in other words, the direction of the
c-director c̃, is arbitrary. Thus equilibrium states character-
ized, respectively, by u=0 and O= R,zu=

0O= R,z
−1 , where O= R,z describes

an arbitrary rotation in the reference space about the z-axis,
must have the same energy. With

O= R,z = �cos � − sin � 0

sin � cos � 0

0 0 1
� �3.26�

describing a counterclockwise rotation of vectors in the ref-
erence space through � about the z-axis, the strain

u=���� = ��= 0T�−1�O= R,zu=
0O= R,z

−1 − u=0���= 0�−1 �3.27a�

=
r� − 1

4 �− r�
−1�1 − cos 2�� r�

−1/2 sin 2� 0

r�
−1/2 sin 2� 1 − cos 2� 0

0 0 0
� �3.27b�

must not cost any elastic energy. Our elastic energy density
�3.23� contains only second-order terms in uij� , and hence it
can at best be invariant with respect to infinitesimal rotations
�46�. However, even for infinitesimal �, the strain u=���� has
nonzero components, namely

uxy� ��� = uyx� ��� =
r� − 1

2�r�

� . �3.28�

Thus, as it does in Eq. �3.23�, the elastic constant Cxyxy of the
term �3.24� must indeed vanish, and this vanishing can be
understood as a result of the spontaneous symmetry breaking
in the xy-plane.

The existence of zero-energy strains that reproduce rota-
tions in the reference space has consequences reaching fur-
ther then just the softness with respect to shear strains uxy� ,
viz. depending on the experimental boundary conditions, ex-
tensional strains uxx� and uyy� can also be soft. If the boundary
conditions are such that no relaxation of strains is allowed,
then strains uxx� and uyy� will cost an elastic energy propor-
tional to �uxx� �2 and �uyy� �2, respectively. If, however, strain
relaxation is allowed and one imposes, for example, uyy� with
the right sign, then uxx� and uxy� can relax under the right
circumstances to produce the zero-energy strain of Eq.
�3.27�, i.e., to make uyy� a soft deformation.

To discuss this in more detail, let us assume for concrete-
ness that the anisotropy in the xy-plane is positive, r��1.

Then it follows from Eq. �3.27� that uyy� is positive and that
uxx� is negative for soft strains and that we consequently can
only have soft elasticity for uyy� �0 and uxx� 	0. Let us con-
sider here as an example a strain with uyy� �0, i.e., a stretch
of the sample along y. Comparison with Eq. �3.27� shows
that, if strain relaxation is allowed and uxx� and uxy� relax to

uxx� = − r�
−1uyy� , �3.29a�

uxy� = ±�uyy� �r� − 1 − 2uyy� �
2r�

, �3.29b�

then uyy� is converted into a zero-energy rotation through an
angle

� = ±
1

2
sin−1� 2

r� − 1
�2uyy� �r� − 1 − 2uyy� �� . �3.30�

Thus uyy� costs no elastic energy as long as 0	uyy� 	 �r�

−1� /2.
When uyy� is increased from zero, � increases from zero

until it reaches  /2 at uyy� = �r�−1� /2 �and uxx� = �r�
−1−1� /2,

uxy� =0� at which point, the deformation tensor defined by
�0ij� =�Ri /�xj� is

�= 0� = �r�
−1/2 0 0

0 r�
1/2 0

0 0 1
� , �3.31�

which leads via �ij =�ik
0 �0kj� to an overall deformation

�= = ��yy
0 0 0

0 �yy
0 �r� 0

0 0 �zz
0 � �3.32�

relative the original uniaxial state. Thus, at �= /2, �ij is
identical to �ij

0 except with �xx
0 =�r��yy

0 replaced by �yy
0 and

�yy
0 replaced by �xx

0 , i.e., the x- and y-axes have been inter-
changed in going from �=0 to �= /2. In the process, c̃
rotates from being parallel to the x-axis to being parallel to
the y-axis �47�.

For uyy� � �r�−1� /2, there is no real solution for �, and a
further increase in uyy� , measured by �uyy� =uyy� − �r�−1� /2,
which stretches the system along the space-fixed y-axis,
costs energy. Since the anisotropy axis is now along the y-
rather than the x-axis, this stretching costs the same energy
as it would have cost to stretch the original system with
anisotropy axis along the space-fixed x-axis by the same
amount. The yy-component of the strain relative to the state
with �= /2 is �uyy� = ��0yy� �−2�uyy� =r�

−1�uyy� . Thus because
the x- and y-axes have been interchanged, the free energy as
a function of uyy� is

fD2h

soft = �0 for �uyy� 	 0,

1

2
Yx��uyy� �2 for �uyy� � 0, � �3.33�

where
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Yx =
1

r�
2 �Cxxxx −

CyyyyCzzxx
2 + CzzzzCxxyy

2 − 2CxxyyCxxzzCyyzz

CyyyyCzzzz − Cyyzz
2 

�3.34�

is the Young’s modulus for stretching along the anisotropy
axis in the xy-plane �originally along x�.

Equation �3.33� has tangible implications for the stress-
strain behavior of soft biaxial elastomers. The stress that is
usually measured in experiments is the engineering stress,
i.e., the force per unit area of the reference state. For the
extensional strain under discussion here, the engineering
stress �43� is to leading order

�yy
eng =

�fD2h

soft

��yy�
= �0 for �yy� 	 �r�,

Yx�0yy� �uyy� for �yy� � �r�.


�3.35�

For �yy� near �0yy� , �uyy� ��0yy� ��yy� −�0yy� �, and �yy
eng

�Yx��yy� −�0yy� �. Figure 3 depicts the dependence of �yy
eng

on �yy� . From �yy� =0 up to a critical defor-
mation �0yy� =�r� the stress is zero. Above the critical
deformation, �yy

eng grows linearly from zero.

IV. SMECTIC-C ELASTOMERS—STRAIN-ONLY THEORY

In this section we use the strain-only theory to study the
phase transition from a uniaxial SmA elastomer to a SmC
elastomer when C5 becomes negative in response to a
SmC-ordering of the mesogenic component.

A. Phase transition from uniaxial to smectic-C elastomers

When C5 is driven negative, the uniaxial state becomes
unstable to shear in the planes containing the anisotropy axis,
and the uniaxial energy �2.15� must be augmented with
higher-order terms involving uaz to stabilize the system:

funi
�2� = funi + D1uzzuaz

2 + D2uiiuaz
2 + D3ûabuazubz + E�uaz

2 �2,

�4.1�

where we omit all unimportant symmetry-compatible higher-
order terms and we use uzz and uii rather than �z and �. To
study the ordered phase of this free energy when C5	0, we

proceed in much the same way as we did for the biaxial state
of funi

�1�. Using Eq. �2.15� for funi, we complete squares to
write funi

�2� as the sum

funi
�2� = funi

�2,1� + funi
�2,2� �4.2�

of the two terms

funi
�2,1� =

1

2
C1wzz

2 + C2wiiwzz +
1

2
C3wii

2 + C4wab
2 , �4.3a�

funi
�2,2� = C5uaz

2 + ER�uaz
2 �2, �4.3b�

where ER, which we assume to be positive, is a renormalized
version of E,

ER = E −
1

2
�2C1 − ��C2 −

1

2
�2C3 −

1

2
�2C4, �4.4�

and where

wzz = uzz − �uaz
2 , �4.5a�

wii = uii − �uaz
2 , �4.5b�

wab = ûab − �	uazubz −
1

2
�abucz

2 
 . �4.5c�

The coefficients in Eqs. �4.4� and �4.5� are given by

	�

�

 =

− 1

C1C3 − C2
2	C3D1 − C2D2

C1D2 − C2D1

 �4.6�

and

� = −
D3

2C4
. �4.7�

In the limit C3→� the coefficient � vanishes whereas �, �,
and ER remain finite.

The equilibrium value uaz
0 of uaz is determined by mini-

mizing funi
�2,2�, which has xy symmetry. Provided that we

choose our coordinate system so that its x-axis is along the
direction of ordering, the corresponding equation of state,

C5uaz
0 + 2ERuaz

0 �ubz
0 �2 = 0, �4.8�

leads to

uyz
0 = 0 for C5 � 0 and C5 	 0 �4.9�

and

S � uxz
0 = �0 for C5 � 0,

±�− C5/�2ER� for C5 	 0.
 �4.10�

From Eqs. �4.3a� and �4.5� the other components of u=0 follow
as

uxx
0 =

1

2
�� + � − ��S2, �4.11a�

uyy
0 =

1

2
�� − � − ��S2, �4.11b�

FIG. 3. Schematic plot �arbitrary units� of the engineering stress
�yy

eng vs the deformation �yy� for a soft biaxial elastomer with an
equilibrium order in the xy-plane along x and positive anisotropy,
r��0. Up to a critical deformation �0yy� =�r� the sample responds
to the deformation merely by rotating c̃ and consequently the stress
is zero. Above �0yy� the sample stretches along the new direction y
of the c-director and �yy

eng grows linearly for small �yy� −�0yy� .
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uzz
0 = �S2. �4.11c�

We learn that, unlike the biaxial case, u=0 is not diagonal; it
has nonvanishing xz and zx components, which implies C2h
rather than D2h symmetry.

As already pointed out in Sec. III, an equilibrium strain
tensor determines the corresponding equilibrium deformation
tensor only up to global rotations in the target space. Here we
choose our coordinate system in the target space so that the
transition from the D2� to the C2h state corresponds to a
simple shear as shown in Fig. 1, i.e., we choose the target
space coordinates so that tan �=�xz

0 /�zz
0 is nonzero but �zx

0

=0. Then the only nonzero components of �= 0 are

�xx
0 = �1 + 2uxx

0 = �1 + �� + � − ��S2, �4.12a�

�yy
0 = �1 + 2uyy

0 = �1 + �� − � − ��S2, �4.12b�

�xz
0 = 2

uxz
0

�xx
0 =

2S
�1 + �� + � − ��S2

, �4.12c�

�zz
0 = �1 + 2uzz

0 − ��xz
0 �2

=�1 + 2
�� − 2�S2 + �� + � − ���S4

1 + �� + � − ��S2 . �4.12d�

B. Elasticity of the smectic-C phase

Next we expand the elastic free energy density about the
equilibrium state. The expansion of funi

�2,1� �Eq. �4.3a�� is par-
ticularly simple and leads to

�funi
�2,1� =

1

2
C1��wzz�2 + C2�wii�wzz +

1

2
C3��wii�2 + C4��wab�2

�4.13�

with

�wzz = �uzz − 2�S�uxz, �4.14a�

�wii = �uii − 2�S�uxz, �4.14b�

�wxx = − �wyy =
1

2
��uxx − �uyy� − �S�uxz, �4.14c�

�wxy = �wyx = �uxy − �S�uyz. �4.14d�

Expanding funi
�2,2� �Eq. �4.3b��, we find that

�funi
�2,2� = 4ERS2��uxz�2 �4.15�

is independent of �uyz, and we might naively expect the sys-
tem to exhibit softness with respect to uyz. This, however, is
not the case because funi

�2,1� depends on �uyz via the relative
strain �4.14d�. Thus the softness of the ordered phase with
C2h symmetry is more subtle than that of the biaxial phase
with D2h symmetry, as we will discuss in more detail further
below. Assembling the contributions �4.13� and �4.15� we
obtain for the entire elastic free energy density to harmonic
order

�f �2� = 2C4��uxy − �S�uyz�2 +
1

2
�C1 + 2C2 + C3���uzz�2

+ 4ES2��uxz�2 +
1

2
�C3 + C4����uxx�2 + ��uyy�2�

+ �C2 + C3��uzz��uxx + �uyy� + �C3 − C4��uxx�uyy

+ �2D2 + D3�S�uxx�uxz + �2D2 − D3�S�uyy�uxz

+ 2�D1 + D2�S�uzz�uxz. �4.16�

Our remaining step in deriving the elastic free energy den-
sity of SmC elastomers is to change from the variables of the
old uniaxial state to those of the new state by switching from
�u= to the new strain tensor u=� as defined in Eq. �3.22�. With
the equilibrium deformation tensor as stated in Eqs. �4.12�
we obtain after some algebra

fC2h

soft =
1

2
C̄�cos � uxy� + sin � uyz� �2 +

1

2
Czzzz�uzz� �2 +

1

2
Cxzxz�uxz� �2

+ Czzxxuzz� uxx� + Czzyyuzz� uyy� +
1

2
Cxxxx�uxx� �2

+
1

2
Cyyyy�uyy� �2 + Cxxyyuxx� uyy� + Cxxxzuxx� uxz� + Cyyxzuyy� uxz�

+ Czzxzuzz� uxz� , �4.17�

where the angle � and the elastic constants depend on the
original elastic constants in Eq. �4.1� and S so that one re-
trieves the uniaxial energy density �2.15� for S→0. The ex-
plicit results for these quantities, which are somewhat
lengthy, can be found in Appendix B. In the incompressible
limit, the specifics of � and the elastic constants get modi-
fied, however, without changing the form of Eq. �4.17�.

Having established the result �4.17�, we are now in the
position to discuss the anticipated softness of the new state.
Our first observation is that the elastic energy density of Eq.
�4.17� has only 12 �including �� rather than the 13 indepen-
dent elastic constants of conventional monolinic solids �48�.
That is because here there are only two rather than three
independent elastic constants in the subspace spanned by uxy�
and uyz� . Below, we present two derivations of this result.

In the first derivation, we exploit the fact that cos � uxy�
+sin � uyz� can be viewed as the dot product of the “vectors”
v� = �uxy� ,uyz� � and e�1= �cos � , sin ��. Thus the first term in Eq.
�4.17�,

1

2
C̄�cos � uxy� + sin � uyz� �2 =

1

2
C̄�e�1 · v��2, �4.18�

is independent of e�2 ·v� , where

e�2 = �− sin �,cos �� �4.19�

is the vector perpendicular to e�1. Thus distortions of the form
−sin � uxy� +cos � uyz=e�2 ·v� , i.e., distortions with v� along e�2,
cost no elastic energy. A manifestation of this softness is that
certain stresses cause no restring force and thus lead to large
deformations. To find these stresses we take the derivative of
the elastic energy density �4.17� with respect to uxy� and uyz�
which tells us that
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− sin ��xy + cos ��zy = e�2 · w� = 0, �4.20�

where again, �ij is the second Piola-Kirchhoff stress tensor
and where we have introduced the “vector”

w� = ��xy,�zy� �4.21�

in the xz-plane. Equation �4.20� means that there are no re-
storing forces for external forces in the xz-plane along ±ẽ2
� ± �−sin � ,0 ,cos �� applied to opposing surfaces with nor-
mal along ±ẽy, and there no restoring forces for external
forces along ±ẽy applied to surfaces with normal along ±ẽ2.
These kinds of stresses are depicted in Fig. 4.

A second derivation of the softness of the SmC phase
involves a transformation to a rotated coordinate system, as
described in Eq. �2.5�, in which the first term in Eq. �4.17� is
diagonal. The components xi�

� of a reference-space vector x�
expressed with respect to a rotated basis �ẽi�

� � i�=x� ,y� ,z��,
where ẽi�

� =OR,y;i�jẽ j with

O= R,y = � cos � 0 sin �

0 1 0

− sin � 0 cos �
� �4.22�

describing a counterclockwise rotation of the reference-space
basis about the y-axis, are simply xi�=OR,y;ijxj�. The compo-
nents of the strain matrix expressed in the rotated basis
are ui�j�

� = ẽi�
� ·u=� · ẽ j�

� =OR,y;i�iuijOR,y;j j�
T , from which we obtain

via Eq. �2.10� that ux�,y�
� =cos � uxy� +sin � uyz� and uy�,z�

�

=−sin � uxy� +cos � uyz� . Thus taking � to be the angle appear-
ing in Eq. �4.17� and dropping the double-prime from the
strains, we obtain

fC2h

soft =
1

2
Cx�y�x�y��ux�y��

2 +
1

2
Cz�z�z�z��uz�z��

2

+
1

2
Cx�z�x�z��ux�z��

2 + Cz�z�x�x�uz�z�ux�x�

+ Cz�z�y�y�uz�z�uy�y� +
1

2
Cx�x�x�x��ux�x��

2

+
1

2
Cy�y�y�y��uy�y��

2 + Cx�x�y�y�ux�x�uy�y�

+ Cx�x�x�z�ux�x�ux�z� + Cy�y�x�z�uy�y�ux�z�

+ Cz�z�x�z�uz�z�ux�z� �4.23�

for the elastic energy density of SmC elastomers in the ro-
tated coordinates. Note that, in this coordinate system, the
elastic constants Cx�y�y�z� and Cy�z�y�z� are zero, and the elas-
tic energy does not depend at all on uy�z�. Cx�y�x�y� is identi-

cal to C̄ and Cy�y�y�y�=Cyyyy. The remaining new elastic con-
stants are nonvanishing conglomerates of the elastic
constants defined via Eq. �4.17� and sines and cosines of �.
We refrain here from stating further specifics to save some
space and because calculating these specifics is a straightfor-
ward exercise.

The vanishing of Cx�y�y�z� and Cy�z�y�z� means that SmC
elastomers are soft with respect to shears in the y�z�-plane. If
one can cut a rectangular sample with faces perpendicular to
the ẽi�

� , then there are no restoring forces for external forces
along ±ẽz�

� applied to opposing surfaces with normal along
±ẽy�

� , and for external forces along ±ẽy�
� applied to surfaces

with normal along ±ẽz�
� . This softness can be visualized as in

Fig. 2 with ẽx replaced by ẽz�
� and ẽy replaced by ẽy�

� = ẽy.
Before we go on, let us finally comment on the impact of

the softness on the phonon spectrum of SmC elastomers. A
comprehensive discussion of the phonon spectrum of course
requires a dynamical theory of smectic elastomers. This is
beyond the scope of this paper and is the topic of a separate
publication �34�. Our current theory allows us to address
static phonons. To this end we switch to Fourier space �49�
and reexpress the elastic energy density �4.17� in terms of the
Fourier transform ũ�q� with respect to x� of the displacement
field u��x��=R��x��−x�. Neglecting the nonlinear part of the
strains, cf. Eq. �2.9�, this yields a Fourier transformed elastic

energy density f̃C2h

soft harmonic in ũ and the wavevector. With

ũx= ũz=qy =0, f̃C2h

soft reduces to

f̃C2h

soft =
1

8
C̄�cos �qx + sin �qz�2ũy

2. �4.24�

Hence the energy cost is zero for phonon displacements ũ
= �0, ũy ,0� parallel to ẽy with wave vector q � ẽz�. By similar
means one also finds that there is no energy cost for ũ � ẽz�
with q � ẽy. This softness of these phonons has tangible im-
plications on the dynamics in that it leads, e.g., to a vanish-
ing of the corresponding sound velocities �34�.

An interesting question that we have left aside so far is, of
course, whether SmC elastomers are, like nematics or biaxial
smectics, soft with respect to certain extensional strains. We
will postpone this question to Sec. V until after we have
developed our strain-and-director model for SmC elastomers.
This will then allow us to discuss soft deformations and
strains more comprehensively, including their impact on the
director.

V. SMECTIC-C ELASTOMERS—THEORY
WITH STRAIN AND DIRECTOR

Our second theory for SmC elastomers, to be presented in
this section, explicitly accounts for the smectic layers and for
the director n. It generalizes the achiral limit of the con-

FIG. 4. Soft distortions of SmC elastomers. There are no restor-
ing forces �a� for external forces in the xz-plane along ±ẽ2 applied
to opposing surfaces with normal along ±ẽy, and �b� for external
forces along ±ẽy applied to surfaces with normal along ±ẽ2.
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tinuum theory by Terentjev and Warner �26� in a formalism
that ensures invariance with respect to arbitrary rather than
infinitesimal rotations of both the director and mass points.
We will see as we move along that the properties of the
transition to the SmC phase predicted by this theory are iden-
tical to those of the strain-only theory, discussed in the pre-
ceding section, in which C5 goes to zero.

A. Reference- and target-space variables and the polar
decomposition theorem

In traditional uncross-linked liquid crystals, there is no
reference space, and all physical fields like the smectic layer-
displacement field U, the layer normal N, and the Frank di-
rector n are defined at real, i.e., target-space points R, and
they transform as scalars, vectors, and tensors under rotations
in the target space. In the Lagrangian theory of elasticity,
fields are defined at reference space points x, and they trans-
form into themselves under the symmetry operations of that
space. To develop a comprehensive theory of liquid-
crystalline elastomers, it is necessary to combine target-space
liquid crystalline fields and reference-space elastic variables
to produce scalars that are invariant under arbitrary rotations
in the target space and under symmetry operations of the
reference space. This requires that we be able to represent
vectors and tensors in either space �7�.

To be more specific, let b be a target-space vector, which
by definition transforms under rotations to b�=O= Tb, and let

b̃ be a reference-space vector, which transforms to b̃�=O= Rb̃.
Recall that both reference- and target-space vectors exist in
the same physical Euclidean space E. Therefore there must
be a transformation that converts a given reference-space
vector to a target-space vector and vice versa while preserv-
ing length. This transformation is provided by the deforma-
tion matrix �= and the matrix polar decomposition theorem
�50�, which states that any nonsingular square matrix can be
expressed as the product of a rotation matrix and a symmet-

ric matrix. If b̃ is a reference-space vector, then �= b̃ is a
target-space vector that transforms under O= T but does not
change under O= R because under x→x�=O= Rx and R→R�
=O= TR, b̃→ b̃�=O= Rb̃, �= →�= �=O= T�= OR

−1 and �= b̃→�= �b̃�
=O= T�= O= R

−1O= Rb̃=O= T�= b̃. The transformation b̃→�= b̃, how-
ever, does not preserve length. To construct a transformation
that does, we simply multiply �= by the square root of the
metric tensor to produce

O= = �= g
=

−1/2. �5.1�

This operator clearly satisfies O= TO= =O= O= T=�= and det O= =1,
and it is thus a length-preserving rotation matrix. Equation
�5.1�, which can be recast in the form �= =O= g

=

1/2, is simply a
restatement of the polar decomposition theorem because g

=
is

a symmetric matrix. To first order in �ui /�xj, Oij reduces to
the standard expression for an infinitesimal local rotation of
an elastic body through an angle �= 1

2 � 
u,

Oij = �ij − �ijk�k + ¯ , �5.2�

where �ijk is the Levi-Civita tensor. Equipped with O= we can

convert �or rotate� any reference-space vector b̃ to a target
space vector b via

b = O= · b̃ �5.3�

and a target-space vector to a reference space vector via

b̃ = O= T · b . �5.4�

An alternative interpretation of the relation between b and b̃
follows from

b = biei = Oijb̃jei � b̃jt j , �5.5�

with

t j = Oji
Te j = gjk

−1/2 �R

�xk
, �5.6�

where we used �kl
T el= ��Rl /�xk�el=�R /�xk. The set of vec-

tors �ti � i=x ,y ,z� forms an orthonormal target-space basis in
the tangent space of the deformed medium �recall that

�R /�xj is a tangent-space vector�. Thus b̃i represents the
components of the target-space vector b relative to the ortho-
normal tangent-space basis defined by ti.

We can now apply this formalism to the Frank director in
smectic elastomers. The familiar director n is a target-space
vector, which we can represent as

n � �c,nz�, nz = �1 − ca
2, �5.7�

where c is the so-called c-director. Contractions of the com-
ponents of n with the stress strain tensor uij do not produce a
scalar because ni and uij transform under different operators.
To create scalar contractions, we can convert n to a
reference-space vector via ñ=O��

−1n, where O�� is defined by
Eq. �5.1�, with

ñ � �c̃, ñz�, ñz = �1 − c̃a
2. �5.8�

Combinations like ñauabñb and ñauazñz are now scalars.
When linearized, these combinations reproduce those in the
original de Gennes theory �51�. Linearized deviations of the
target-space director from its equilibrium n0 can be ex-
pressed as �n=�
n0, where � is a rotation angle. Then
�ñ= c̃= ��−��
n0 and, for example, c̃auaz→uaz���−��

n0�a. Since we are interested in the transition from the
SmA to the SmC phase in which n undergoes a rotation
through a finite rather than an infinitesimal angle relative to
its equilibrium in the SmA phase, we need to use the full
nonlinear representation of rotation matrices.

As we discussed in Sec. II, the reference space can be
endowed with an orthonormal basis �ẽi�. This space is aniso-
tropic, and we take ẽz to be along the uniaxial anisotropy
direction of the SmA material �41�. Cross-linking in the SmA
phase freezes in an anisotropy direction in the elastic net-
work and, therefore, a general preference for the reference-
space director to align along ẽz. This preference, present in
elastomers cross-linked in the nematic as well as the SmA
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phase, is distinct from the preference, which we will discuss
shortly, for the director to adopt a preferred angle relative to
the layer normal.

An important property of O�� is that it reduces to the unit
matrix when ��� is symmetric, i.e., under pure shear transfor-
mations, target- and reference-space vectors are identical.
Thus if a reference-space vector is known �calculated, for
example, by minimizing a free energy that depends only on
reference-space vectors and tensors�, the associated target-
space vector is obtained by rotating the reference-state vector
by the operator O�� , which is the same operator that rotates the
pure shear configuration to the target-space configuration de-
scribed by ��� . Figure 5 depicts the effect on an initial refer-
ence state unit vector of a symmetric shear and then a sub-
sequent rotation to a final target state.

B. Development of a model for smectic elastomers

Having established the relation between reference- and
target space vectors, we can now develop a complete phe-
nomenological energy density f for smectic elastomers in
terms of reference-space variables only. For briefness, we
will in the following often refer to energy densities simply as
energies. We will be content with an expansion of f in pow-
ers of the strain uij and the c-director up to fourth order.
There are three distinct contributions to f: �1� the elastic
energy fnet of the anisotropic network—this is the harmonic
energy of nematic elastomers �1,52� augmented by some
nonlinear terms, �2� the compression energy f layer of smectic
layers, and �3� the energy f tilt associated with tilt of the nem-
atic director relative to the layer normal. The latter two con-
tributions are essentially the Chen-Lubensky �CL� model
�53� model generalized to elastomers. We will assume that
smectic layers are locked to the elastic network as is the case
when the network is cross-linked in the smectic phase. The
moduli and coupling constants in fnet, f layer, and f tilt contrib-
ute to the moduli and coupling constants in f . We will iden-

tify and calculate these contributions in what follows, denot-
ing each contribution by the appropriate superscript. Thus,
for example, C1

net is the contribution of C1 from fnet.
The sum of all of the above contributions to the energy

can conveniently be decomposed as follows:

f = funi + fnonlin + fc + fcoupl. �5.9�

We discuss each of these terms individually. funi is the
uniaxial elastic energy to quadratic order in strain of Eq.
�2.15� with five elastic constants C1 , . . . ,C5. Nonlinear strain
energies are contained in fnonlin. This energy has many terms
in general, but we will keep only those terms that are rel-
evant to the development of shear strain and smectic-C
order:

fnonlin = − B1uzzuza
2 + B2�uza

2 �2. �5.10�

To impose the full nonlinear incompressibility constraint to
order �uaz

2 �, we should include couplings of uii to uaz
2 . If we

did this, there would be a contribution to the energy of the
form 1

2B�uii–2uza
2 �2, where B is the bulk compression modu-

lus. This would of course yield a contribution to B2 of order
B. To treat such a term, we could replace uii by 2uza

2 +�uii
and express the energy in terms of �uii rather than uii. We
will instead continue to consider the theory defined above
without coupling between uii and uaz

2 . The two theories ef-
fectively differ only in the value of B2.

The energy associated with the development of c-order
described with nonzero c̃a is

fc =
r

2
c̃a

2 +
v
4

�c̃a
2�2, �5.11�

and the energy of director-strain coupling is

fcoupl = �1c̃a
2uzz + �2c̃a

2uii + �3c̃aûabc̃b + �4c̃auaz + �5uzzuazc̃a.

�5.12�

Here we have retained terms linear in uij and up to quadratic
order c̃a. We also keep the �5 term, which is linear in c̃a and
quadratic in u�� ; this contributes to the behavior of SmA elas-
tomers under uniaxial extensional strain, which we will dis-
cuss in a separate paper �36�. The contributions of fnet, f layer,
and f tilt to the various terms in funi, fnonlin, fc, and fcoupl are
summarized in Table I.

We now discuss the individual contributions fnet, f layer,
and f tilt, beginning with fnet. This is the energy of a nematic
elastomer, which we express in terms of reference-state vari-
ables only and which we expand in powers of uij and c̃a. It
can be calculated from the neoclassical energy developed by
Warner and Terentjev �1� with an explicit volume compres-
sion energy 1

2B�det g�� −1�2, where B is the compression

modulus of order 3
109 Pa, in addition to the entropic en-
ergy 1

2�Tr ��� ���0���
T���

−1, where ��106 Pa is the rubber shear

modulus and ���0 and ��� are the polymer step-length tensors,

respectively, at sample preparation and in a general distorted
state of the system. The first step-length tensor is a reference-
space tensor with components

FIG. 5. Schematic representation of distortions in the xz-plane
induced by the SmA-to-SmC transition: �a� undistorted SmA phase,
�b� SmC phase with a symmetric deformation tensor ��� , �c� SmC
phase with �xz�0 and �zx=0, and �d� SmC phase with �xz=0 and
�zx�0.
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�0ij = l���ij + �p − 1�ẽiẽ j� , �5.13�

where ẽ� ẽz specifies the direction of uniaxial anisotropy in
the references state �denoted by n0 in WT�, �� is the step
length perpendicular to ẽ, and p=�� /��, with �� the step
length parallel to ẽ. ���

−1 is a target-space tensor with compo-

nents �ij
−1=��

−1��ij + �p−1−1�ninj�. Following standard proce-
dures �1�, fnet can be cast as the sum of a uniaxial energy in
the form of funi+ fnonlin+ fcoupl. Its contributions to the various
moduli and coupling constants are listed in Table I. The co-
efficients C5

net, �4
net, and rnet satisfy C5

net= ��1
net�2 / �2rnet� as is

required for soft nematic elastomers �1�. We should logically
add a semisoft energy �4–6� because we assume that the
system was cross-linked in the smectic phase. This will turn
out to be unnecessary because f layer and f tilt contribute the
same kind of semisoft terms but with greater magnitude.

To derive both f layer and f tilt, we need to discuss in more
detail the smectic displacement field U and the layer normal
N. The smectic mass-density-wave amplitude for a system
with layer spacing d has a phase

��R� = q0�Rz − U�R�� , �5.14�

where q0=2 /d. Since there is a one-to-one mapping from
the reference-space points x to the target-space points R�x�,
we can express � as a function of x as

��x� = q0�z + uz�x� − U„R�x�…� . �5.15�

We are only considering systems cross-linked in the smectic
phase in which the smectic mass-density wave cannot trans-
late freely relative to the reference material, and there is a
term

f lock-in =
1

2
A�uz − U�2 �5.16�

in the total free-energy density that locks the smectic field U
to the displacement field uz �27�. In what follows, we will
take this lock-in as given and set U=uz. This has some in-
teresting consequences. The smectic phase is now �=q0z,
which implies

�i� = ��/�Ri = q0��−1�zi, �5.17�

where we introduced the notation that �M��ij is the
ij-component of the matrix M��

� for any matrix M�� and expo-

nent � �we retain the notation Mij ��M�ij�. Thus, in the tar-
get space, the unit layer normal reads

Ni =
�i�

����
=

��−1�zi

�g−1�zz
. �5.18�

Using the polar decomposition theorem, we can calculate the
reference-space layer normal

Ñi =
�g−1/2�iz

�g−1�zz
1/2 . �5.19�

With these definitions, we have

ñ · Ñ = n · N � 1 −
1

2
�c̃a + uaz�2 +

1

2
uzzc̃auaz +

1

2
uzzuaz

2

−
5

8
�uaz

2 �2. �5.20�

In this expression, we have retained the dominant terms nec-
essary to describe the SmA−SmC transition and the
Helfrich-Hurault instabilities �54,55� produced by an exten-
sional strain uzz along z. We have not included higher-order
terms in c̃a and uij, which could change the numerical values
of our results but not their form.

The preferred spacing between smectic layers depends on
the orientation of the director relative to the layer normals. If
n is parallel to N, the preferred spacing is d. If n is not
parallel to the smectic layer spacing should scale approxi-
mately as d cos �, where � is the angle between n and N. A
phenomenological energy that reflects this preference is

f layer =
1

2
Bsmq0

−4��n · ���2 − q0
2�2 =

1

2
Bsm��g−1�zz�ñ · Ñ�2 − 1�2

� 2Bsm�uzz + �c̃a + uaz�2 − 2uaz
2 �2. �5.21�

The smectic compression modulus Bsm is of order 107 Pa
deep in the smectic phase though it vanishes as the transition
to the nematic phase is approached. f layer is the generalization
to elastomers of the compression energy in the Chen-
Lubensky �53� model for SmA and SmC phases. We could
have used the more isotropic compression energy propor-
tional to �����2−q0

2�2 instead. It is the one studied in �31�.
The advantage of the CL energy over the latter energy is that
it encodes the tendency for layer spacing to decrease when �
becomes nonzero. If, for example, uaz=0 and c̃a�0, then to

TABLE I. Contributions to coefficients in f from fnet, f layer, and f tilt with a=��p–1�2� �2p�.

C1 C2 C3 C4 C5 B1 B2 �1 �2 �3 �4 �5 r v

Net 3� −� 4B−� � 1

2
�

�p+1�2

p
a −a �

2p2− p−1

2p
−�

p−1

2p
−�

p−1

p
−�

p2−1

p
−

3

2
a �

�p−1�2

p
0

Layer 4Bsm 0 0 0 0 6Bsm
9

2
Bsm

2Bsm 0 0 0 4Bsm 0 2Bsm

Tilt 0 0 0 0 1

2
rt

1

2
rt

1

4
vt+

1

2
rt

0 0 0 rt −
1

2
rt

rt vt
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minimize f layer, uzz=− 1
2 c̃a

2	0. Thus as expected tilt decreases
uzz and layer spacing. The CL energy, like the more isotropic
one, also has built in the physics of the Helfrich-Hurault
instability �54�, which we will discuss in another paper �36�.
If c̃a=0 and uzz�0, then f layer is minimized when there is a
shear strain, uza= ±�uzz /2.

Finally, we turn to the tilt energy. This is most easily

expressed in terms of sin2 �=1− �ñ · Ñ�2:

f tilt =
1

2
rt sin2 � +

1

4
vt sin4 � �

1

2
rt��c̃a + uaz�2 − uzzuazc̃a

− uzzuaz
2 + �uaz

2 �2� +
1

4
vt��c̃a + uaz�2�2. �5.22�

The modulus rt is generally of order but less than Bsm. How-
ever, it vanishes as the transition from the SmA to the SmC
phase in uncross-linked smectics is approached.

C. Phase transition from smectic-A to smectic-C elastomers

Having developed a full model for smectic elastomers that
provides a description of both the SmA and SmC phases, we
can study the transition from the SmA to the SmC phase. In
this transition c̃a becomes nonzero, and because of the cou-
pling between c̃a and uaz, uaz also becomes nonzero. Alter-
natively, we could say that the angle �� c̃a+uaz becomes
nonzero and drives the development of a nonzero uaz because
of a �−uaz coupling. We will use the variables c̃a and uaz to
describe the SmA−SmC transition. To keep our discussion
simple, we will focus on the development of c-order and
include only those terms in the free energy that play an im-
portant role in this transition. Accordingly, we will ignore
fnonlin, i.e., we set B1=B2=0, and we will set �5=0. Setting
these coefficients, which are relevant to the Helfrich-Hurault
instability, to zero does not lead to any qualitative modifica-
tion of our results for the SmA-to-SmC transition. When �1
=�2=�3=0, the model described in Eqs. �5.9�–�5.12� is
equivalent to that studied in Ref. �26� when polarization is
ignored. When c̃a is integrated out of f , the result is identical
to the elastic energy density funi

�2� of Sec. IV with C5 renor-
malized to C5,R=C5−�4

2 / �2r�, with Dm, m=1,2 ,3, replaced
by �m�4

2 /r, and with E replaced by �v /4+r /2��4
4 /r4.

We can now analyze the transition to the SmC phase in
exactly the same way as we did in the strain only model of
Sec. IV. We complete the squares involving the strains and
the director-strain couplings. The resulting elastic energy
density is once more a sum of two terms,

f = f �1� + f �2�, �5.23�

where

f �1� =
1

2
C1w̄zz

2 + C2w̄iiw̄zz +
1

2
C3w̄ii

2 + C4w̄ab
2 �5.24�

is quadratic in the shifted strains

w̄zz = uzz − �̄c̃c
2, �5.25a�

w̄ii = uii − �̄c̃c
2, �5.25b�

w̄ab = ûab − �̄	c̃ac̃b −
1

2
�abc̃c

2
 , �5.25c�

w̄az = uaz − �̄c̃a, �5.25d�

and where

f �2� =
1

2
rRc̃c

2 +
1

4
vR�c̃c

2�2 �5.26�

depends on c̃ only. The coefficients �̄, �̄, and �̄ in Eqs. �5.25�
are of the same form as the coefficients �, �, and � of Sec.
IV, see Eqs. �4.6� and �4.7�, albeit with Dl, l=1,2 ,3, replaced
by �l. The coefficient �̄ is given by

�̄ = −
�4

2C5
. �5.27�

The renormalized elastic constants rR and vR in Eq. �5.26�
read

rR = r −
�4

2

2C5
, �5.28a�

vR = v − 2�̄2C1 − 4�̄�̄C2 − 2�̄2C3 − 2�̄2C4 + 4�̄2C5.

�5.28b�

In the incompressible limit, the coefficient �̄ vanishes
whereas the remaining coefficients and the renormalized
elastic constants rR and vR stay nonzero.

The transition to the SmC phase occurs at rR=0. From
Table I, we have r=rt+��p−1�2 / p, �4=rt−��p2−1� / p, and
2C5=rt+��p1�2 / p, and we find that the critical value rt

c of rt

at which the transition occurs to be zero. In other words, the
coupling to the elastic network does not affect the SmC tran-
sition temperature. This result is a direct consequence of the
assumed semisoftness of the elastomer in the absence of
smectic ordering.

Next we minimize f to assess the equilibrium states. With
our coordinate system chosen so that c̃ aligns along x, we
obtain readily from Eq. �5.26� that

c̃y
0 = 0 for rR � 0 and rR 	 0 �5.29�

and

S � c̃x
0 = sin � = �0 for rR � 0,

±�− rR/vR for rR 	 0,
 �5.30�

where � is the angle that the reference-space director makes
with the z-axis. The full reference space nematic director is
thus

ñ = �sin �,0,cos �� . �5.31�

Note that this corresponds to a counterclockwise rotation
through � about the y-axis of the original director ñ
= �0,0 ,1� in the SmA phase. The director �5.31� is also the
target space director under a symmetric deformation tensor
�= 0 as shown in Fig. 5�b�.

The components of the equilibrium strain tensor then fol-
low from Eqs. �5.26� as
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uxx
0 =

1

2
��̄ + �̄ − �̄�S2, �5.32a�

uyy
0 =

1

2
��̄ − �̄ − �̄�S2, �5.32b�

uzz
0 = �̄S2, �5.32c�

uxz
0 = uzx

0 = �̄S , �5.32d�

and zero for the remaining components. Thus to leading or-
der in the order parameter S, the equilibrium strain tensor has
exactly the same form as the one predicted by the strain-only
theory of Sec. IV. The only differences reside in the specifics
of the fore-factors of the S- and S2-terms, which are qualita-
tively unimportant.

Once again, we have to choose our coordinate system in
target space. As in Sec. IV we choose this system so that the
transition from SmA to SmC amounts to the simple shear
shown in Fig. 1�c� with tan �=�xz

0 /�zz
0 , and �zx

0 =0. With
this choice,

�= 0 = ��xx
0 0 �xz

0

0 �yy
0 0

0 0 �zz
0 � , �5.33�

where

�xx
0 = �1 + ��̄ + �̄ − �̄�S2, �5.34a�

�yy
0 = �1 + ��̄ − �̄ − �̄�S2, �5.34b�

�xz
0 =

2�̄S

�1 + ��̄ + �̄ − �̄�S2
, �5.34c�

�zz
0 =�1 + 2�̄2S2 +

4�̄2S2�1 − S2�
1 + ��̄ + �̄ − �̄�S2 . �5.34d�

Knowing c̃0 and �= 0 we can discuss what happens in the
SmC phase to the layer normal, the director, and the uniaxial
anisotropy axis. Under the simple shear �5.34�, ��zi

0 �−1

= ��zz
0 �−1�zi, and hence

N = �0,0,1� . �5.35�

Thus, as expected, the shear deformation induced by the
transition to the Sm-C phase slides the smectic layers paral-
lel to each other. In this geometry, it does not rotate the layer
normal. Since N is parallel to the z-axis under simple shear,
the angle between the layer normal and the nematic director
n is the angle that the director makes with the z axis under
simple shear. This angle is simply �=�+�, where � is the
angle through which the sample has to be rotated to bring the
symmetric-shear configuration to the simple-shear configura-
tion. Under symmetric shear, the symmetric deformation ten-
sor is given by

�= S = g
=

1/2 = ��= + 2u= �1/2. �5.36�

In order to calculate �, we need the symmetric equilibrium
deformation tensor �= S

0, given by Eq. �5.36� with g
=

replaced
by g

=

0=�= 0T�= 0. In terms of the components of �= S
0,

� = tan−1���1 + 2u0�1/2�zx/��1 + 2u0�1/2�zz�

� uxz
0 = 2�̄S �

p − 1

p + 1
S , �5.37�

where we replaced rt by rt
c=0 to obtain the final result. Note

that uxz and � are positive as depicted in Fig. 5. Tedious but
straightforward algebra verifies that the simple-shear defor-
mation tensor �= 0, whose components are given by Eq.
�5.34�, satisfies �= 0=O= y����g

=

0�1/2, where

O= y��� = � cos � 0 sin �

0 1 0

− sin � 0 cos �
� �5.38�

is the matrix for a counterclockwise rotation about the y-axis,
which is in the paper in Fig. 5, through �. The angle between
n and N, which is equivalent to the angle between n and the
z-axis, is

� = � + � = 	1 −
�4

2C5

S �

2p

p + 1
S . �5.39�

The uniaxial anisotropy vector ẽ becomes e
= �sin � ,0 ,cos ��.

Note finally that the angle � in Fig. 5 is �=tan−1��1
+2u0�1/2�xz / ��1+2u0�1/2�zz�uxz. Thus to lowest order �=�.
They differ, however, at higher order in S. The tilt angle �
depicted in Fig. 1�c� is given in terms of the angles defined in
Fig. 5 by �=�+��2��2�p−1� / �p+1�S. Thus the sponta-
neous mechanical tilt of the sample, as described by �, and
the tilt of the mesogens, as described by �, are not equal.

D. Elasticity of the smectic-C phase

To study the elastic properties of the SmC phase we ex-
pand the elastic energy density f about the C2h equilibrium
state. Expansion of f �1� to harmonic order results in

�f �1� =
1

2
C1��w̄zz�2 + C2�w̄ii�w̄zz +

1

2
C3��w̄ii�2 + C4��w̄ab�2

+ C5��w̄az�2 �5.40�

with the composite strains

�w̄zz = �uzz − 2�̄S�c̃x, �5.41a�

�w̄ii = �uii − 2�̄S�c̃x, �5.41b�

�w̄xx = − �w̄yy =
1

2
��uxx − �uyy� − �̄S�c̃x, �5.41c�

�w̄xy = �w̄yx = �uxy − �̄S�c̃y , �5.41d�
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�w̄xz = �w̄zx = �uxz − �̄	1 −
3

2
S2
�c̃x, �5.41e�

�w̄yz = �w̄zy = �uyz − �̄	1 −
1

2
S2
�c̃y . �5.41f�

The expansion of f �2� is particularly simple. It leads to

�f �2� = vRS2��c̃x�2. �5.42�

A glance at Eqs. �5.40�–�5.42� shows that the two compo-
nents of the c-director, �c̃x and �c̃y, play qualitatively differ-
ent roles. Whereas �c̃y appears only in the composite strains
�5.41�, the component �c̃x also appears in Eq. �5.42�. In the
spirit of Landau theory of phase transitions, the term
vRS2��c̃x�2 makes �c̃x a massive variable. �c̃y, on the other
hand, is massless. Since �c̃x is massive, the softness of the
SmC phase that we expect from what we have learned in
Sec. IV cannot come from the relaxation of �c̃x. Rather it has
to result from the relaxation of �c̃y. Anticipating this relax-
ation �c̃y, we rearrange �f �2� so that �c̃y appears only in one
place. Then we combine the two contributions �f �1� and �f �2�

and integrate out the massive variable �c̃x. Some details on
these steps are outlined in Appendix C.

Our final step in deriving the elastic energy density is to
change from the strain variable �u= to u=�= ��= 0T�−1�u= ��= 0�−1

with the equilibrium deformation tensor as given in Eqs.
�5.34�. This takes us to

fSmC = fC2h

soft + ���c̃y + �yy
0



�2�xx

0 C4� + �xz
0 C5��uxy� + �zz

0 C5�uyz�

�
�2

,

�5.43�

where �=−�̄S, �=−�̄�1−S2 /2�, and �=2C4�2+C5�2. fC2h

soft

is exactly of the same form as the result stated in Eq. �4.7�.
The only differences lie in the specifics of the elastic con-
stants. Our final formulas for the elastic constants, which are
rather lengthy, are collected in Appendix B.

Equation �5.43� shows clearly that �c̃y can relax locally to

�c̃y = − �yy
0 �2�xx

0 C4� + �xz
0 C5��uxy� + �zz

0 C5�uyz�

�

�5.44�

which eliminates the dependence of the elastic energy den-
sity on the linear combination of strains appearing on the
right-hand side of Eq. �5.44�. In other words, the relaxation
of �c̃y produces an elastic energy density identical to that of
our strain-only model presented in Sec. IV,

fSmC = fC2h

soft , �5.45�

up to the aforementioned differences in the specific details of
the elastic constants. These details do not affect the elasticity
qualitatively. As in Sec. IV, the limit S→0 reproduces the
uniaxial elastic energy density of Eq. �2.15� and the incom-
pressible limit leaves the form of fSmC unchanged. Most im-
portantly, our model with strain and director predicts the

same softness of SmC elastomers as our strain-only model of
Sec. IV.

In our analysis we have completely neglected the Frank
energy, i.e., the effects of a nonspatially homogeneous direc-
tor. However, it is legitimate to ask if it might affect the
softness of the material because, a priori, it is not impossible
that the Frank energy could lead to a mass for �c̃y. We ad-
dress this question in Appendix D, where we find that �c̃y
remains massless even if the Frank energy is included.

E. Rotational invariance and soft extensional strains

In this section we will discuss the softness of SmC elas-
tomers from the viewpoint of rotational invariance in the
xy-plane of the reference space. The results presented here
depend only on symmetries and not on the detailed form of
any free energy. They thus apply quantitatively even when
strains are large. Moreover, we will inquire whether SmC
elastomers are, like nematics and biaxial smectics, soft with
respect to certain extensional strains. Here, we will use a
somewhat different starting point than in Sec. III C in that we
first consider soft deformations �1,7,56� rather than soft
strains. First, this is interesting in its own right. Second, this
will set the stage for a comparison of our theory to the work
of AW �32� on the softness of SmC elastomers. The results
presented here depend only on symmetry and the existence
of a broken-symmetry state with the symmetry of the SmC
phase. They are not restricted to the Landau expansion of the
free-energy we used in preceding sections or to small strains.

Let us first determine the general form of soft deforma-
tions. The equilibrium or “ground state” deformation tensor
�= 0 maps points in the reference space to points in the target
space via R�x�=�= 0x. Rotational invariance about the z-axis
in the reference space ensures that R�O= R,z

−1 x�=�= 0O= R,z
−1 x de-

scribes a state with equal energy, i.e., an alternative ground
state. In other words, a deformation described by

�̄= 0 = �= 0O= R,z
−1 �5.46�

has the same energy as one described by �= 0. Any deforma-
tion �= relative to the original reference system can be ex-
pressed in terms of a deformation �= � relative to the reference
system obtained from the original reference system via �= 0

through the relation

�= = �= ��= 0. �5.47�

Thus choosing �= =�
=

0, we find that the deformation

�= � = �= 0O= R,z
−1 ��= 0�−1, �5.48�

with O= R,z the counterclockwise rotation matrix as given in
Eq. �3.26�, describes a zero-energy deformation of the refer-
ence state represented by ���

0. Further rotations of ��� � in the
target space, of course, do not change the energy, and the
most general soft deformation tensor is

�̃= � = O= T�= �, �5.49�

where O�� T is an arbitrary target-space rotation matrix.
The reasoning just presented applies to any elastomer

with rotational invariance about the z-axis in reference space.
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Now let us turn to the specifics for SmCs. Inserting the equi-
librium deformation tensor as calculated in Sec. IV A or Sec.
V C, we obtain

�= � = � cos � r�
1/2 sin � s�1 − cos ��

− r�
−1/2 sin � cos � sr�

−1/2 sin �

0 0 1
� ,

�5.50�

for SmC elastomers, where s=�xz
0 /�zz

0 and, as before, r�

= ��xx
0 /�yy

0 �2. Of particular interest to our discussion of re-
sponse to imposed strain, which we present shortly, will be

soft strains with a vanishing xy component. To construct
such a soft deformation tensor, we rotate through an angle �
about the z axis,

�̃= � = O= T,z����= �. �5.51�

Then, the condition �̃xy� =0 is satisfied when the target-space
and reference space rotation angles are related via tan �
=r�

1/2 tan � in which case

�̃= � = g����
1 0 − s�1 − cos ��

1

2
r�

−1/2�r� − 1�sin 2� cos2 � + r� sin2 �
1

2
r�

−1/2s�− �r� − 1�sin 2� + 2r� sin ��

0 0 1
� , �5.52�

where g���= �1+ �r�−1�sin2 ��−1/2. When �= /2, then

�̃= 0� � �̃= ��� = /2� = �r�
−1/2 0 − sr�

−1/2

0 r�
1/2 s

0 0 1
� , �5.53�

which corresponds to an overall deformation

�= = �̃= 0��=
0 = ��yy

0 0 0

0 �xx
0 �xz

0

0 0 �zz
0 � , �5.54�

i.e., to a shear deformation of the original SmA in the yz-
rather than the xz-plane. Figure 6 shows the effect of defor-

mations �̃�� � for a series of values of � between 0 and  /2.

Knowing the deformation tensor �̃�� �, we know how the
shape of a sample changes in a soft deformation. An equally
interesting question is, however, how the orientation of the
mesogens changes under such a deformation. To address this
question, we recall from Sec. V A that rotations in the refer-
ence space do not affect the target space vectors such as the
director n. Thus n does not change in response to rotation
described by OR,z���. Of course, under target space rotations,
n does change according to n�i=OT,ijnj. Therefore, the direc-
tor, as given in Eq. �5.39�, changes in the process of the soft

deformation �̃�� � to

n = �cos � sin �T,sin � sin �T,cos �T� . �5.55�

At this point we pause briefly to compare our findings to
AW. Our soft deformation tensor �5.51� is, up to differences
in notation, identical to the soft deformation tensor found by
AW, see the last equation in the Appendix of Ref. �32�. The
same holds true for the change in the director associated with
these soft deformations, Eq. �5.55�. However, whereas the
AW derivation emphasizes geometric constraints, ours em-
phasizes that softness arises from invariances with respect to
reference space rotations and the independent nature of ref-
erence and target space rotations. It should be noted that
unlike the AW derivation, ours does not impose incompress-
ibility; rather the incompressibility condition of the soft de-
formation arises naturally from the form of Eq. �5.48�.

To discuss the implication of the rotational invariance on
the Lagrange elastic energy, we now switch from deforma-
tions to strains. In terms of the soft deformation, the general
form of the soft strain tensor is given by

FIG. 6. �Color online� Effect of deformations ��� � as given in Eq.
�5.52� for a series of values of � between �a� and �f�  /2 with �
increased in steps of  /10. In the process a parallelepiped-shaped
sample with initial shear in the xz-plane is transformed into a par-
allelepiped with shear in the yz-plane that appears as if the original
parallelepiped had been rotated by  /2 about the z-axis.
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u=� =
1

2
���= ��T�= � − �= � =

1

2
���̃= ��T�= � − �= � �5.56�

independent of target-space rotations. Inserting Eq. �5.50� or
Eq. �5.52�, it is straightforward to check that Eqs. �5.56� and
�3.27a� are equivalent. Using Eq. �5.50� we find

uxx� ��� = −
r� − 1

4r�

�1 − cos 2�� , �5.57a�

uxy� ��� =
r� − 1

4�r�

sin 2� , �5.57b�

uxz� ��� = −
s

r�

�1 − �r� − 1�cos ��sin2 �

2
, �5.57c�

uyy� ��� =
r� − 1

4r�

�1 − cos 2�� , �5.57d�

uyz� ��� =
s

2�r�

�r� − �r� − 1�cos ��sin � , �5.57e�

uzz� ��� = −
s2

r�

�1 + r� − �r� − 1�cos ��sin2 �

2
�5.57f�

for the specifics of the soft strain. Equation �5.57a� implies
that the soft strain has nonzero components for infinitesimal
�, viz.

uxy� ��� = uyx� ��� =
r� − 1

2�r�

� , �5.58a�

uyz� ��� = uzy� ��� =
s

2�r�

� . �5.58b�

To ensure that these infinitesimal strains do not cost elastic
energy the following combination of elastic constants has to
vanish:

Cxyxy�r� − 1�2 + 2Cxyyzs�r� − 1� + Cyzyzs
2 = 0. �5.59�

This equation is fulfilled if

Cxyxy = C̄ cos2 � , �5.60a�

Cxyyz = C̄ cos � sin � , �5.60b�

Cyzyz = C̄ sin2 � , �5.60c�

with the angle � given by

� = tan−1	1 − r�

s

 . �5.61�

Note by comparing Eqs. �5.60� and �4.17� that the analysis of
the rotational invariance presented here gives exactly the
same relations between the elastic constants as our analyses
of the SmA-to-SmC phase transition presented in Sec. IV and
Secs. V C and V D.

Modifying our arguments slightly, we can also understand
from them the vanishing of the elastic constants Cx�y�y�z� and
Cy�z�y�z� in the elastic energy density �4.23�. Rotating the soft
strain tensor with the rotation matrix �4.22� with the rotation
angle � given by Eq. �5.61� leads to a soft strain tensor that
has in the limit of small � only

uy�z���� = uy�z���� =
s

2�r�

�1 +
�r� − 1�2

s2 � �5.62�

as nonzero components. For this strain to cost no energy
Cx�y�y�z� and Cy�z�y�z� must be zero as they are in Eq. �4.23�.

Next we turn to the question whether extensional strains
can be soft in SmC elastomers. As we did for biaxial smec-
tics we consider extensional strains along the y-axis, uyy�
�0, as a specific example. Again we assume, for the sake of
the argument, positive anisotropy in the xy-plane, r��1.
Equations �5.57� imply that uyy� is converted into a zero-
energy rotation through an angle � as given in Eq. �3.30�, if
the remaining components relax to

uxx� = − r�
−1uyy� , �5.63a�

uxy� =�uyy� �r� − 1 − 2uyy� �
2r�

, �5.63b�

uxz� = −
s

2
�1 −

2uyy�

r�

−�1 −
2uyy�

r� − 1
� , �5.63c�

uyz� =
s

2
� 2uyy�

r��r� − 1�
�r� − ��r� − 1��r� − 1 − 2uyy� �� ,

�5.63d�

uzz� = s2�1 −
uyy�

r�

−�1 −
2uyy�

r� − 1
� . �5.63e�

When uyy� is increased from zero to uyy� =uyy
c ��r�−1� /2, �

grows from zero to  /2 and the state of the elastomer, origi-
nally described by the equilibrium strain tensor u��

0 is changed
without costing elastic energy to

u=0� =
1

2�r�
−1 − 1 0 − s/r�

0 r� − 1 s�r�

− s/r� s�r� s2�r�
−1 + 1�

� , �5.64�

which is, of course, the strain tensor associated with the de-
formation tensor of Eq. �5.53�.

In this process, the shape of the sample changes as de-
picted in Fig. 6. As already discussed, the configuration at
�= /2 describes a sample in which the SmA phase was
sheared in the yz-rather than the xz-plane. Thus further in-
crease in u�yy beyond uyy

c is equivalent to increasing uxx� be-
yond zero in the original sample sheared in the xz-plane.
Thus the second Piola-Kirchhoff stress is
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�yy
II = �0 if uyy� 	 uyy

c ,

Yx�uyy� − uyy
c � if uyy� � uyy

c ,
 �5.65�

where Yx is the Youngs modulus for stretching along x.
Equation �5.65� implies that the stress usually measured in
experiments, i.e., the engineering stress, is given at leading
order by

�yy
eng =�0 if �̃yy� 	 �r�,

Yx�̃0yy� ��̃yy� − �̃0yy� � if �̃yy� � �r�,
 �5.66�

Therefore, when plotted as a function of the deformation

�̃yy� , the engineering stress �yy
eng for a SmC elastomer looks

qualitatively the same as the corresponding curve for a nem-
atic or a biaxial smectic elastomer, cf. Fig. 3.

VI. CONCLUDING REMARKS

In summary, we have presented models for transitions
from uniaxial SmA elastomers to biaxial and SmC elas-
tomers: Landau-like phenomenological models as functions
of the Cauchy–Saint–Laurent strain tensor for both the tran-
sitions as well as a detailed model for the transition from the
SmA to the smectic-C phase. The detailed model includes
contributions from the elastic network, smectic layer com-
pression, and coupling of the Frank director to the smectic
layer normal, and allowed for estimating the magnitudes of
its phenomenological coupling constants. We employed the
three models to investigate the nature of the soft elasticity,
required by symmetry, of monodomain samples of the biax-
ial and SmC phases.

We learned that biaxial smectic elastomers are soft with
respect to shears in the smectic plane. In addition to that we
saw that extensional strains can be converted by the material
into zero-energy rotations, provided the experimental bound-
ary conditions are not too restrictive and allow the remaining
strain degrees of freedom to relax. We illustrated this soft-
ness by explicitly considering an elongation in the y direc-
tion �the direction perpendicular to the order in the smectic
plane� as a specific example. However, we could impose an
extensional strain in any direction and we would find soft-
ness, provided the c-director has freedom to rotate into that
direction. This excludes only stretches in directions lying in
the plane spanned by the equilibrium c-director and the ini-
tial uniaxial direction �i.e., in our convention stretches in
directions lying in the xz-plane�. Of course, the width of the
soft plateau in the stress-strain curve, c.f. Fig. 3, depends on
how much the c-director can rotate until it has reached the
direction of a stretch. Therefore the soft plateau will be most
pronounced for stretches perpendicular to the plane spanned
by the equilibrium c-director and the initial uniaxial direction
�our y-direction�.

The softness of SmC elastomers is more intricate than that
of biaxial smectics. At first sight it seems as if it takes a very
specific combination of shears to achieve a soft response.
However, with the coordinate system chosen appropriately, it
turns out that SmC elastomers are soft with respect to certain
conventional shear strains �with our conventions shears in
the y�z�-plane�. Even more important, as far as possible ex-

perimental realizations of softness SmC elastomers are con-
cerned, is that these materials are also soft under extensional
strains. What we have said above for biaxial smectics also
applies here: the experimental boundary conditions must be
right and the direction of the imposed stretch must be so that
the c-director can rotate.

As pointed out in the Introduction, very recently consid-
erable experimental progress was made by Hiraoka et al.
�19�, who synthesized a monodomain sample of a SmC elas-
tomer forming spontaneously from a SmA phase upon cool-
ing. This is exactly the type of elastomer for which our SmC
theory was made. Therefore it seems well founded to hope
that our predictions for SmC elastomers can be tested experi-
mentally in the near future.
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APPENDIX A: EFFECTS OF HIGHER ORDERS
IN THE STRAINS

A priori, a formulation of stretching energy densities in
terms of the variables � and �z provides a more adequate
framework for discussing the incompressible limit than a for-
mulation in terms of the respective linearized expressions uii
and uzz. Using uii and uzz, on the other hand, makes our
models more tractable and perhaps also more intuitive be-
cause we stay in close contact to the standard formulation of
elasticity as presented in textbooks. The purpose of this ap-
pendix is to discuss what changes occur in our theories if we
use � and �z instead of uii and uzz.

1. Biaxial elastomers

Now we use Eq. �2.12� as the starting point for setting up
our model for soft biaxial elastomers. When C4 can become
negative, higher order terms featuring ûab, �, and �z must be
added to Eq. �2.12� so that the model elastic energy density
becomes

funi
�2� = funi + A1�zûab

2 + A2�ûab
2 + B�ûab

2 �2. �A1�

Proceeding in close analogy to the steps described following
Eq. �3.1�, we find that the equilibrium values of � and �z are

�z
0 = ��ûab

0 �2 =
1

2
�S2, �A2a�

�0 = ��ûab
0 �2 =

1

2
�S2, �A2b�

with � and � as given in Eq. �3.5�. The equilibrium values
uaz

0 and ûab
0 remain unchanged. To learn more about the equi-

librium state, our next task is to determine the equilibrium
strain tensor u=0. Using our knowledge about uaz

0 and ûab
0 , it is

clear that u=0 is of the form
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u=0 =�
1

2
�t + S� 0 0

0
1

2
�t − S� 0

0 0 uzz
0
� , �A3�

where we used the abbreviation t=ucc
0 . t and uzz

0 are unknown
thus far and we need to determine them as functions of the
order parameter S. Replacing �z and uzz in Eq. �2.11b� by �z

0

and uzz
0 , using Eq. �A2a� for �z

0 and solving for uzz
0 we find

uzz
0 =

1

2
�	1 +

1

2
�S2
2

− 1� . �A4�

To leading order in S this result reduces to uzz
0 = 1

2�S2, which
coincides with the result of our linearized theory presented in
Sec. III. It remains to calculate t. Since u=0 is diagonal, Eq.
�2.11a� leads simply to

�0 = ��1 + t + S��1 + t − S��1 + 2uzz
0 ��1/2 − 1. �A5�

Using Eqs. �A2� for �0 and uzz
0 we obtain by solving for t:

t = �	1 +
�

2
S2
2

	1 +
�

2
S2
2 + S2�

1/2

− 1. �A6�

To leading order in S this expression reduces to t= 1
2 ��−�

+1�S2. Comparing this to the result ucc
0 = 1

2 ��−��S2 of our
linearized theory, we see that the linearized theory lacks the
contribution 1

2S2 to ucc
0 . Nevertheless, up to this detail, the

form of the equilibrium state predicted by the linearized and
the nonlinearized theory is the same. In the end, the nonlin-
earized theory leads to the elastic energy density

f =
1

2
C1gzz

−2��uzz�2 + C2gzz
−1ū�uzz +

1

2
C3�ū�2 + C5��uaz�2

+ B2S2��uxx − �uyy�2 + �A1Sgzz
−1/2�uzz + A2Sū���uxx

− �uyy� , �A7�

for the soft biaxial state, where

ū = �det�1 + 2u=0��1/2���= + 2u=0�−1�u= �ii =
VB

V0
uii� �

�V

V0
,

�A8�

where V0 is the volume of the reference uniaxial state, VB is
the volume of the biaxial state, and �V=V−VB. Thus volume
changes in the biaxial phase are suppressed by the term pro-
portional to C3 in Eq. �A7�. In the incompressible limit C3
→�, the nonlinear theory indeed produces fixed �V=0 and
not �uii=0 as the linearized theory does. Our findings about
the softness of the biaxial state, however, remain practically
the same.

2. SmC-elastomers

When C5 can become negative in response to SmC order-
ing of the mesogens, higher order terms featuring uaz, �, and

�z must be added to Eq. �2.12� to ensure mechanical stability.
Then the model elastic energy density becomes

funi
�2� = funi + D1�zuaz

2 + D2�uaz
2 + D3ûabuazubz + E�uaz

2 �2.

�A9�

Essentially repeating the algebra described following Eq.
�4.1�, we find

�z
0 = ��uaz

0 �2 = �S2, �A10a�

�0 = ��uaz
0 �2 = �S2, �A10b�

with � and � as given in Eq. �4.6�. ûab
0 and uaz

0 remain the
same as in Sec. IV A. Consequently, the equilibrium strain
tensor is of the form

u=0 =�
t

2
0 S

0
t

2
0

S 0 uzz
0
� , �A11�

where t=ucc
0 . For determining the equilibrium state, it re-

mains to compute t and uzz
0 as functions of S. From Eqs.

�2.11b� and �A10a� it follows readily that

uzz
0 =

1

2
��1 + �S2�2 − 1� , �A12�

which is to leading order in S identical to the result uzz
0

=�S2 of our linearized theories for SmC elastomers. Equa-
tions �2.11b� and �A11� lead us to

�0 = ��1 + t�2�1 + 2uzz
0 � − 4�1 + t�S2�1/2 − 1. �A13�

Taking into account the equilibrium values �A10a� and solv-
ing for t we find

t =
2S2

�1 + �S2�2 + � �1 + �S2�2

�1 + �S2�2 +
4S4

�1 + �S2�4�1/2

− 1.

�A14�

To leading order in S, t= ��−�+2�S2, which has to be com-
pared to the ucc

0 = ��−��S2 stemming from our linearized
theories for SmC elastomers. Note that the linearized theo-
ries miss the contribution 2S2 to ucc

0 . However, as was the
case for the biaxial soft state, this discrepancy does not affect
the nature of the softness.

APPENDIX B: ELASTIC CONSTANTS

This appendix collects our results for the elastic constants
of biaxial and SmC elastomers.

1. Elastic constants of biaxial elastomers

The elastic constants of soft biaxial elastomers as defined
in the elastic energy density �3.23� are given to order
O�S3� by
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Czzzz = C1 + 2C2 + C3 + 2��C1 + 2C2 + C3�S2, �B1�

Cxzxz = 2�C5 + C5S +
1

2
�� + ��C5S2� , �B2�

Cyzyz = 2�C5 − C5S +
1

2
�� + ��C5S2� , �B3�

Czzxx = C2 + C3 + �C2 + C3 + A1 + A2�S

+ �1

2
�� + ���C2 + C3� + A1 + A2�S2, �B4�

Czzyy = C2 + C3 − �C2 + C3 + A1 + A2�S

+ �1

2
�� + ���C2 + C3� + A1 + A2�S2, �B5�

Cxxxx = C3 + 2�C3 + A2�S + ��1 − � + ��C3 + 4A2 + 2B�S2,

�B6�

Cyyyy = C3 − 2�C3 + A2�S + ��1 − � + ��C3 + 4A2 + 2B�S2,

�B7�

Cxxyy = C3 − ��1 + � − ��C3 + 2B�S2. �B8�

2. Elastic constants of SmC elastomers

Here we list our results for the elastic constants of soft
SmC elastomers as defined in Eq. �4.17�.

a. Elastic constants as obtained from the strain-only model
of Sec. IV

Our results for the angle � and the elastic constant C̄ read

� = tan−1	 − �zz
0 �S

�xx
0 − �xz

0 �S

 = − �S + O�S3� , �B9�

C̄ = 4C4
��yy

0 �2��xx
0 − �xz

0 �S�2

cos2 �

= 4C4 + 4C4�2�� − �� + �� − 4���S2 + O�S4� .

�B10�

For the remaining elastic constants we find to order O�S3�

Czzzz = C1 + 2C2 + C3 + 4�� − 2��C1 + 2C2 + C3�S2,

�B11�

Cxzxz = 8�2�C1 + 2C2 + C3� + 2�D1 + D2� + E�S2,

�B12�

Czzxx = C2 + C3 + ��� + � + � − 4��C2 + C3�

+ 4�C1 + 2C2 + C3� + 4�D1 + D2��S2, �B13�

Czzyy = C2 + C3 + �� + � − � − 4��C2 + C3�S2, �B14�

Cxxxx = C3 + C4 + 2�4C2 + �4 + � + � − ��C3

+ �� + � − ��C4 + 2�2D2 + D3��S2, �B15�

Cyyyy = C3 + C4 + 2�� − � − ���C3 + C4�S2, �B16�

Cxxyy = C3 − C4 + 2�2�C2 + C3�

− �� − ���C3 − C4� + 2D2 − D3�S2, �B17�

Cxxxz = �4�C2 + C3� + 2D2 + D3�S , �B18�

Cyyxz = �4�C2 + C3� + 2D2 − D3�S , �B19�

Czzxz = 2�2�C1 + 2C2 + C3� + D1 + D2�S . �B20�

b. Elastic constants as obtained from the model
with strain and director of Sec. V

For � and C̄ we find

� = tan−1	 − �zz
0 �

�xx
0 � − �xz

0 �

 = −

�̄

�̄
S + O�S3� , �B21�

C̄ = 4
C4C5

�

��yy
0 �2��xx

0 � − �xz
0 ��2

cos2 �

= 4C4 + 4
2�̄2C4 + �2�̄2��̄ − �̄ + 2�̄� − �̄2�C5

�̄2C5

C4S2

+ O�S4� . �B22�

The remaining elastic constants are given to order O�S3� by

Czzzz = C1 + 2C2 + C3 + 4���̄ − 2�̄2��C1 + 2C2 + C3�

− 2
��1 + �2�2

�4
2 C5�S2, �B23�

Cxzxz = 8�2�̄2�C1 + 2C2 + C3�

+
gC5 + �4��4 − 2�2�2 − �3��

�4
2 C5�S2, �B24�
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Czzxx = C2 + C3 + �4�̄2C1 + �4�̄2 + �̄ + �̄ + �̄�C2

+ ��̄ + �̄ + �̄�C3 − 4
2�2

2 + �1�2�2 + �3�
�4

2 C5

+ 4
�̄�3�4 − �2��3 + 2�̄�4�

�4
2 C5�S2, �B25�

Czzyy = C2 + C3 + ���̄ + �̄ − �̄ − 4�̄2��C2 + C3�

− 4
��1 + �2��2�2 − �3�

�4
2 C5�S2, �B26�

Cxxxx = C3 + C4 + 2�4�̄2�C2 + C3� + ��̄ + �̄ − �̄��C3 + C4�

−
�2�2 + �3�2 + 8�̄�4��1 + �2�

�4
2 C5�S2, �B27�

Cyyyy = C3 + C4 + 2���̄ − �̄ − �̄��C3 + C4�

+
�2�2 − �3�2

�4
2 C5�S2, �B28�

Cxxyy = C3 − C4 + 2�2�̄2�C2 + C3� − ��̄ − �̄��C3 − C4�

− 2
��1 + �2��2�2 − �3� + �̄�4�2�2 + �3�

�4
2 C5�S2,

�B29�

Cxxxz = 4��̄�C2 + C3� −
�1 + �2

�4
C5�S , �B30�

Cyyxz = 2�2�̄�C2 + C3� −
2�2 + �3

�4
C5�S , �B31�

Czzxz = 2�2�̄�C1 + 2C2 + C3� −
2�2 − �3

�4
C5�S . �B32�

APPENDIX C: STEPS LEADING TO EQ. (5.43)

In this appendix we outline some of the algebraic steps
leading from Eqs. �5.40� and �5.42� to Eq. �5.43�. As dis-
cussed in the text following Eq. �5.26�, the role of �c̃y is
special in that it is the local relaxation of this quantity that
makes SmC elastomers soft. To see this, we recast Eq.
�5.40�, where �c̃y appears in two different terms, by using

2C4��w̄xy�2 + C5��w̄yz�2 = ���c̃y +
2C4��uxy + C5��uyz

�
�2

+ 2
C4C5

�
���uyz − ��uxy�2, �C1�

with �, �, and � as defined below Eq. �5.43�. The validity
of Eq. �C1� can be checked by straightforward but slightly
tedious algebra.

The second major step in going from Eqs. �5.40� and
�5.42�, after these are combined, to Eq. �5.43�, is to integrate
out the massive variable �c̃x, i.e., to replace �c̃x by its mini-
mum value. This minimization is straightforward but a little
inconvenient because of the number of terms that are in-
volved. Combining Eq. �C1� and the outcome of this mini-
mization we arrive at the intermediate result

�f = ���c̃y +
2C4��uxy + C5��uyz

�
�2

+ 2
C4C5

�
���uyz − ��uxy�2

+
1

2
�C1 + 2C2 + C3 −

2

�
��1 + �2�2S2���uzz�2 + �C5 −

�4
2

4�
	1 −

3

2
S2
���uxz�2

+
1

2
�C3 + C4 −

2

�
	�2 +

�3

2

2

S2���uxx�2 +
1

2
�C3 + C4 +

2

�
	�2 −

�3

2

2

S2���uyy�2

+ �C2 + C3 −
2

�
��1 + �2�	�2 +

�3

2

S2��uzz�uxx + �C2 + C3 −

2

�
��1 + �2�	�2 −

�3

2

S2��uzz�uyy

+ �C3 − C4 −
2

�
��1 + �2�	�2 −

�3

2

S2��uxx�uyy + �−

1

�
��1 + �2��4S	1 −

3

2
S2
��uxx�uxz

+ �−
1

�
	�2 +

�3

2

�4S	1 −

3

2
S2
��uyy�uxz + �−

1

�
	�2 −

�3

2

�4S	1 −

3

2
S2
��uzz�uxz, �C2�
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where we have used the shorthand �=gS2+C5�̄2�1+5S2 /2�.
Switching from the strain variable �u= to u=�
= ��= 0T�−1�u= ��= 0�−1 then takes us to Eq. �5.43�.

APPENDIX D: EFFECTS OF THE FRANK ENERGY
ON THE SOFTNESS

In Sec. V we have neglected the Frank energy. In this
appendix we check if our conclusions about the softness of
SmC elastomers are affected if we take the Frank energy, or
rather the corresponding density

fFrank =
1

2
K1�� · n�2 +

1

2
K2�n · �� 
 n��2

+
1

2
K3�n 
 �� 
 n��2, �D1�

into account. To this end we have to check if Eq. �D1� can
lead to a mass for �c̃y.

Each of the three terms in Eq. �D1� features a derivative.
Since the director n lives in the target space, these deriva-
tives are derivatives with respect to the target space coordi-
nate R, i.e.,

�kni =
�ni

�Rk
= ��= −1�lk

�ni

�xl
. �D2�

In Sec. V we modeled SmC elastomers via converting the
director to a reference space vector by using the polar de-
composition theorem. Doing the same conversion here we
get with the help of Eq. �5.3�

�kni = ��= −1�lk� �Oij

�xl
ñj + Oij

�ñj

�xl
 . �D3�

The second term in the braces contains a derivative of ñj and
hence it is clear that it cannot lead to a massive term. This
leaves us with the first term in the braces as a potential
source of a mass. Using Eq. �5.2� we get

�Oij

�xl
=

�

�xl
�Aij + ¯ , �D4�

where �Aij =
1
2 �� jui−�iuj� is the antisymmetric part of the dis-

placement gradient tensor �ij =� jui. Thus the first term in the
braces couples ñj to derivatives of �ij and higher order terms,
and as such this term cannot make �c̃y massive in a pertur-
bative �diagrammatic� expansion. Furthermore, the terms in
this expansion will be subdominant compared to the uyzc̃y at
small wavenumber q. Rotational invariance in the reference
space should dictate that Frank energy terms do not ever
generate a mass for c̃y, a full demonstration of this fact to all
orders in perturbation theory is beyond the scope of this
paper. We conclude that our findings about the soft elasticity
of SmC elastomers remain unchanged if we include the
Frank energy in our model.
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